等比數(shù)列{an}中,a1=1,a2=2,f(x)=x(x-a1)(x-a2)(x-a3)(x-a4),f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),則f′(0)=
 
考點(diǎn):導(dǎo)數(shù)的運(yùn)算
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先根據(jù)等比數(shù)列,求出a3=4,a4=8,再設(shè)設(shè)g(x)=(x-a1)(x-a2)(x-a3)(x-a4),則f(x)=xg(x),求導(dǎo),得到f′(0)=g(0)+0×g′(0)=g(0),問題得以解決.
解答: 解:設(shè)g(x)=(x-a1)(x-a2)(x-a3)(x-a4),
則f(x)=xg(x),
∴f′(x)=g(x)+xg′(x),
∴f′(0)=g(0)+0×g′(0)=g(0),
∵等比數(shù)列{an}中,a1=1,a2=2,
∴a3=4,a4=8,
∴g(0)=(0-a1)(0-a2)(0-a3)(0-a4)=a1•a2•a3•a4=1×2×4×8=64.
∴f′(0)=64.
故答案為:64.
點(diǎn)評:本題主要考查了等比數(shù)列以及導(dǎo)數(shù)的運(yùn)算法則,關(guān)鍵是構(gòu)造g(x)=(x-a1)(x-a2)(x-a3)(x-a4),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=2sin(2x+
π
3
)-1,x∈[0,
π
3
]的值域?yàn)閇-1,1],當(dāng)y取最大值時,x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若球O1、球O2的表面積之比
S1
S2
=4,則它們的半徑之比
R1
R2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列五個命題:
(1)函數(shù)y=sin(2x+
π
3
)在區(qū)間(-
π
3
π
6
)內(nèi)單調(diào)遞增.
(2)函數(shù)y=cos4x-sin4x的最小正周期為2π.
(3)函數(shù)y=cos(x+
π
3
)的圖象關(guān)于點(diǎn)(
π
6
,0)對稱.
(4)函數(shù)y=tan(x+
π
3
)的圖象關(guān)于直線x=
π
6
成軸對稱.
(5)把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移
π
6
得到函數(shù)y=3sin2x的圖象.
其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)實(shí)數(shù)x,y滿足不等式組
x+y≤2
y-x≤2
y≥1
,則x2+y2的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題:
①函數(shù)y=2cos(2x+
π
6
)圖象的一個對稱中心為(
π
6
,0);
②函數(shù)y=sin(
1
2
x-
π
6
)在區(qū)間[-
π
3
,
11
6
π]上的值域?yàn)閇-
3
2
2
2
];
③函數(shù)y=cosx的圖象可由函數(shù)y=sin(x+
π
4
)的圖象向右平移
π
4
個單位得到;
④若方程sin(2x+
π
3
)-a=0在區(qū)間[0,
π
2
]上有兩個不同的實(shí)數(shù)解x1,x2,則x1+x2=
π
6
.其中正確命題的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)锳,若存在x1,x2∈A,當(dāng)f(x1)=f(x2)時,x1≠x2,則稱f(x)為多值函數(shù),給出下列命題:
①f(x)=
2
x
不是多值函數(shù)
②f(x)=x2-2x是多值函數(shù)
③f(x)=
log2x,x≥2
2-x, x<2
不是多值函數(shù)
④f(x)是多值函數(shù),若x1,x2∈A且x1≠x2,則f(x1)=f(x2
⑤若f(x)是定義域上單調(diào)函數(shù),則f(x)不是多值函數(shù)
其中真命題的序號是
 
(填出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:①相等的角,在直觀圖中仍相等;②長度相等的線段,在直觀圖中長度仍相等;③若兩條線段平行,在直觀圖中對應(yīng)的線段仍平行;④若兩條線段垂直,則在直觀圖中對應(yīng)的線段也互相垂直.其中正確命題的個數(shù)為(  )
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知非零向量
a
b
滿足|
a
|=2|
b
|=|
a
-2
b
|,則向量
a
b
的夾角為( 。
A、
π
6
B、
π
3
C、
3
D、
6

查看答案和解析>>

同步練習(xí)冊答案