已知函數(shù)f(x)=數(shù)學(xué)公式,若a≠b,且f(a)=f(b),則f(x)≤f(ab)的解集為________.

{1}∪(10,+∞)
分析:根據(jù)題意畫出分段函數(shù)的簡(jiǎn)圖,如圖.由已知條件a≠b,不妨令a<b,又y=lgx是一個(gè)增函數(shù),且f(a)=f(b),故可0<a<1<b,則 lga=-lgb,由此可得ab的值,最后結(jié)合圖象即可得出f(x)≤f(1)的解集.
解答:解:根據(jù)題意畫出分段函數(shù)的簡(jiǎn)圖,如圖.
因?yàn)閒(a)=f(b),所以|lga|=|lgb|.
不妨設(shè)0<a<b,則由題意可得0<a<1<b,
∴l(xiāng)ga=-lgb,lga+lgb=0,
∴l(xiāng)g(ab)=0,∴ab=1,
∴f(x)≤f(ab),
即f(x)≤f(1)=0,
結(jié)合圖象可知,x=1或x>10.
故答案為:{1}∪(10,+∞).
點(diǎn)評(píng):本小題主要考查對(duì)數(shù)函數(shù)的性質(zhì)、函數(shù)的單調(diào)性、函數(shù)的值域,考查數(shù)形結(jié)合思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案