(本題滿分14分)已知函數(shù)f (x)=lnx,g(x)=ex

 (I)若函數(shù)φ (x) = f (x)-,求函數(shù)φ (x)的單調(diào)區(qū)間;

 (Ⅱ)設(shè)直線l為函數(shù) y=f (x) 的圖象上一點A(x0,f (x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=g(x)相切.

注:e為自然對數(shù)的底數(shù).

 

【答案】

解:(Ⅰ) ,

.  2分

∴函數(shù)的單調(diào)遞增區(qū)間為.··············· 4分

(Ⅱ)∵ ,∴

∴ 切線的方程為, http:// /

,  、 ······················ 6分

設(shè)直線與曲線相切于點

,∴,∴.················· 8分

∴直線也為,

,  ②······················· 9分

由①②得 ,

.···························· 11分

下證:在區(qū)間(1,+)上存在且唯一.

由(Ⅰ)可知,在區(qū)間上遞增.

,,······ 13分

結(jié)合零點存在性定理,說明方程必在區(qū)間上有唯一的根,這個根就是所求的唯一.                                               

故結(jié)論成立.

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)已知向量 ,,函數(shù).   (Ⅰ)求的單調(diào)增區(qū)間;  (II)若在中,角所對的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分14分)已知,且以下命題都為真命題:

命題 實系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復(fù)數(shù)同時滿足.

求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)已知函數(shù)

(1)若,求x的值;

(2)若對于恒成立,求實數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

已知橢圓的離心率為,過坐標(biāo)原點且斜率為的直線相交于、,

⑴求、的值;

⑵若動圓與橢圓和直線都沒有公共點,試求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE = x,G是BC的中點.沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)x=2時,求證:BD⊥EG ;

(2)若以F、B、C、D為頂點的三棱錐的體積記為

的最大值;

(3)當(dāng)取得最大值時,求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習(xí)冊答案