對于正整數(shù)n.證明:f(n)=32n+2-8n-9是64的倍數(shù).
證明:(1)當(dāng)n=1時,f(1)═34-8-9=64能被64整除,命題成立.
(2)假設(shè)當(dāng)n=k時,f(k)=32k+2-8k-9能夠被64整除.
當(dāng)n=k+1時,f(k+1)=32k+4-8(k+1)-9=9[32k+2-8k-9]+64k+64=9[32k+2-8k-9]+64(k+1)
∵f(k)=32k+2-8k-9能夠被64整除,
∴f(k+1)=9[32k+2-8k-9]+64(k+1)能夠被64整除.
即當(dāng)n=k+1時,命題也成立.
由(1)(2)可知,f(n)=32n+2-8n-9(n∈N*)能被64整除,即f(n)=32n+2-8n-9是64的倍數(shù).
分析:利用數(shù)學(xué)歸納法來證明,當(dāng)n=1時,命題成立,再假設(shè)當(dāng)n=k時,f(k)=32k+2-8k-9能夠被64整除,證明當(dāng)n=k+1時,命題也成立.
點評:本題考查數(shù)學(xué)歸納法的運用,解題的關(guān)鍵正確運用數(shù)學(xué)歸納法的證題步驟,屬于中檔題.