n(n-1)(n-2)•…•4等于(  )
分析:由題意,n(n-1)(n-2)•…•4可化為
n(n-1)(n-2)•…•4•3•2•1
3•2•1
,故可得答案
解答:解:由題意,n(n-1)(n-2)•…•4=
n(n-1)(n-2)•…•4•3•2•1
3•2•1
=
P
n-3
n

故選D.
點評:本題主要考查排列數(shù)公式的運用,應注意上下標的含義.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•黃浦區(qū)二模)對n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點與y=fn+1(x)圖象的左端點重合;并回答這些端點在哪條直線上.
(2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點,試將kn表示成n的函數(shù).
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數(shù)解的個數(shù)(這里的kn是(2)中的kn),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)一模)將邊長分別為1、2、3、…、n、n+1、…(n∈N*)的正方形疊放在一起,形成如圖所示的圖形,由小到大,依次記各陰影部分所在的圖形為第1個、第2個、…、第n個陰影部分圖形.設前n個陰影部分圖形的面積的平均值為f(n).記數(shù)列{an}滿足a1=1,an+1=
f(n),當n為奇數(shù)
f(an),當n為偶數(shù)

(1)求f(n)的表達式;
(2)寫出a2,a3的值,并求數(shù)列{an}的通項公式;
(3)記bn=an+s(s∈R),若不等式
.
1       00
    bnbn+2
bn+1 bn+1bn+1
.
>0
有解,求s的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點與y=fn+1(x)圖象的左端點重合;并回答這些端點在哪條直線上.
(2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點,試將kn表示成n的函數(shù).
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數(shù)解的個數(shù)(這里的kn是(2)中的kn),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學江蘇省無錫市青陽高級中學高三(上)月考數(shù)學試卷(一)(解析版) 題型:解答題

對n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點與y=fn+1(x)圖象的左端點重合;并回答這些端點在哪條直線上.
(2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點,試將kn表示成n的函數(shù).
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數(shù)解的個數(shù)(這里的kn是(2)中的kn),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年上海市黃浦區(qū)、嘉定區(qū)高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

對n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點與y=fn+1(x)圖象的左端點重合;并回答這些端點在哪條直線上.
(2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點,試將kn表示成n的函數(shù).
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數(shù)解的個數(shù)(這里的kn是(2)中的kn),并證明你的結論.

查看答案和解析>>

同步練習冊答案