精英家教網(wǎng)如圖,l1、l2是通過(guò)某城市開(kāi)發(fā)區(qū)中心O的兩條南北和東西走向的街道,連接M、N兩地之間的鐵路線是圓心在l2上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且|MO|=3km,點(diǎn)N到l1、l2的距離分別為4km和5km.
(1)建立適當(dāng)坐標(biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問(wèn)題,要求校址到點(diǎn)O的距離大于4km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于
26
km
,求該校址距點(diǎn)O的最近距離(注:校址視為一個(gè)點(diǎn)).
分析:(1)建立坐標(biāo)系,利用圓心在弦的垂直平分線上求圓心坐標(biāo),再求半徑,進(jìn)而寫(xiě)出圓的方程.
(2)據(jù)條件列出不等式,運(yùn)用函數(shù)單調(diào)性解決恒成立問(wèn)題.
解答:解:(1)分別以l2、l1為x軸,y軸建立如圖坐標(biāo)系.精英家教網(wǎng)
據(jù)題意得M(0,3),N(4,5),∴kMN=
5-3
4-0
=
1
2
,
MN中點(diǎn)為(2,4),
∴線段MN的垂直平分線方程為:y-4=-2(x-2)),
故圓心A的坐標(biāo)為(4,0),
半徑r=
(4-0)2+(0-3)2
=5
,(5分)
∴弧
MN
的方程為:(x-4)2+y2=25(0≤x≤4,5≥y≥3).(8分)
(2)設(shè)校址選在B(a,0)(a>4),
(x-a)2+y2
26
,對(duì)0≤x≤4恒成立.
(x-a)2+25-(x-4)2
 ≥ 
26
,對(duì)0≤x≤4恒成立.
整理得:(8-2a)x+a2-17≥0,對(duì)0≤x≤4恒成立(﹡).(10分)
令f(x)=(8-2a)x+a2-17.
∵a>4,∴8-2a<0,
∴f(x)在[0,4]上為減函數(shù),(12分)
∴要使(﹡)恒成立,當(dāng)且僅當(dāng)
a>4
f(4)≥0
,即
a>4
(8-2a)•4+a2-17≥0
,
解得a≥5,(14分)
即校址選在距O最近5km的地方.(16分)
點(diǎn)評(píng):本題主要考查求點(diǎn)的軌跡方程的方法,函數(shù)的恒成立問(wèn)題,利用二次函數(shù)在閉區(qū)間上的單調(diào)性求函數(shù)的值域,
屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省徐州市豐縣修遠(yuǎn)雙語(yǔ)學(xué)校高二(上)第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,l1、l2是通過(guò)某城市開(kāi)發(fā)區(qū)中心O的兩條南北和東西走向的街道,連接M、N兩地之間的鐵路線是圓心在l2上的一段圓弧.若點(diǎn)M在點(diǎn)O正北方向,且|MO|=3km,點(diǎn)N到l1、l2的距離分別為4km和5km.
(1)建立適當(dāng)坐標(biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問(wèn)題,要求校址到點(diǎn)O的距離大于4km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于,求該校址距點(diǎn)O的最近距離(注:校址視為一個(gè)點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省連云港市東海高級(jí)中學(xué)高三(上)期末數(shù)學(xué)模擬試卷(二)(解析版) 題型:解答題

如圖,l1、l2是通過(guò)某城市開(kāi)發(fā)區(qū)中心O的兩條南北和東西走向的街道,連接M、N兩地之間的鐵路線是圓心在l2上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且|MO|=3km,點(diǎn)N到l1、l2的距離分別為4km和5km.
(1)建立適當(dāng)坐標(biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問(wèn)題,要求校址到點(diǎn)O的距離大于4km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于,求該校址距點(diǎn)O的最近距離(注:校址視為一個(gè)點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年江蘇省常州市西夏墅中學(xué)高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,l1、l2是通過(guò)某城市開(kāi)發(fā)區(qū)中心O的兩條南北和東西走向的街道,連接M、N兩地之間的鐵路線是圓心在l2上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且|MO|=3km,點(diǎn)N到l1、l2的距離分別為4km和5km.
(1)建立適當(dāng)坐標(biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問(wèn)題,要求校址到點(diǎn)O的距離大于4km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于,求該校址距點(diǎn)O的最近距離(注:校址視為一個(gè)點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年安徽省皖西六校高三聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,l1、l2是通過(guò)某城市開(kāi)發(fā)區(qū)中心O的兩條南北和東西走向的街道,連接M、N兩地之間的鐵路線是圓心在l2上的一段圓。酎c(diǎn)M在點(diǎn)O正北方向,且|MO|=3km,點(diǎn)N到l1、l2的距離分別為4km和5km.
(1)建立適當(dāng)坐標(biāo)系,求鐵路線所在圓弧的方程;
(2)若該城市的某中學(xué)擬在點(diǎn)O正東方向選址建分校,考慮環(huán)境問(wèn)題,要求校址到點(diǎn)O的距離大于4km,并且鐵路線上任意一點(diǎn)到校址的距離不能少于,求該校址距點(diǎn)O的最近距離(注:校址視為一個(gè)點(diǎn)).

查看答案和解析>>

同步練習(xí)冊(cè)答案