15.已知直線(xiàn)l過(guò)定點(diǎn)A(2,-1),圓C:x2+y2-8x-6y+21=0.
(1)若l與圓C相切,求l的方程;
(2)若l與圓C交于M,N兩點(diǎn),求△CMN面積的最大值,并求此時(shí)l的直線(xiàn)方程.

分析 (1)分類(lèi)討論,利用圓心C(4,3)到已知直線(xiàn)l的距離等于半徑2,即可求l的方程;
(2)若l與圓C交于M,N兩點(diǎn),求△CMN面積,利用配方法求出最大值,即可求此時(shí)l的直線(xiàn)方程.

解答 解:(1)將圓的一般方程化為標(biāo)準(zhǔn)方程,得(x-4)2+(y-3)2=4,∴圓心C(4,3),半徑r=2.
①若直線(xiàn)l的斜率不存在,則直線(xiàn) x=2,符合題意.
②若直線(xiàn)l的斜率存在,設(shè)直線(xiàn)l:y+1=k(x-2),即kx-y-2k-1=0.
∵l與圓C相切,∴圓心C(4,3)到已知直線(xiàn)l的距離等于半徑2,即$\frac{{|{2k-4}|}}{{\sqrt{{k^2}+1}}}=2$,解得$k=\frac{3}{4}$.
綜上,所求直線(xiàn)方程為x=2或3x-4y-10=0.
(2)直線(xiàn)與圓相交,斜率必定存在,設(shè)直線(xiàn)方程為kx-y-2k-1=0,則圓心到直線(xiàn)l的距離$d=\frac{{|{2k-4}|}}{{\sqrt{{k^2}+1}}}$,
又∵△CMN面積$S=\frac{1}{2}•d•2\sqrt{4-{d^2}}=\sqrt{4{d^2}-{d^4}}=\sqrt{-{{({{d^2}-2})}^2}+4}$,
∴當(dāng)$d=\sqrt{2}$時(shí),Smax=2,
由$d=\frac{{|{2k-4}|}}{{\sqrt{{k^2}+1}}}=\sqrt{2}$,解得k=1或k=7,
∴直線(xiàn)方程為x-y-3=0或7x-y-15=0.

點(diǎn)評(píng) 本題考查直線(xiàn)與圓的位置關(guān)系,考查點(diǎn)到直線(xiàn)的距離公式,體現(xiàn)分類(lèi)討論的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知焦點(diǎn)在x軸的橢圓的離心率與雙曲線(xiàn)3x2-y2=3的離心率互為倒數(shù),且過(guò)點(diǎn)(1,$\frac{3}{2}$).
(1)求橢圓方程;
(2)若直線(xiàn)l:y=kx+m(k≠0)與橢圓交于不同的兩點(diǎn)M,N,點(diǎn)P($\frac{1}{5}$,0),有|MP|=|NP|,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.設(shè)函數(shù)f(x)=3x+cos(x+φ),x∈R,則“φ=$\frac{π}{2}$”是“函數(shù)f(x)為奇函數(shù)”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知a2+4b2=1,則2a2+4ab的最大值為$\sqrt{2}+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知銳角△ABC中的三個(gè)內(nèi)角分別為A,B,C.
(1)設(shè)$\overrightarrow{BC}•\overrightarrow{CA}=\overrightarrow{CA}•\overrightarrow{AB}$,判斷△ABC的形狀;
(2)設(shè)向量$\overrightarrow s=(2sinC,-\sqrt{3})$,$\overrightarrow t=(cos2C,2{cos^2}\frac{C}{2}-1)$,且$\overrightarrow s∥\overrightarrow t$,若$sinA=\frac{1}{3}$,求$sin(\frac{π}{3}-B)$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)f(x)是定義在[-2,2]上的增函數(shù),且f(1-m)<f(m),則實(shí)數(shù)m的取值范圍($\frac{1}{2}$,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知f(x+1)=x2-2x,
(1)求f(3);
(2)求f(x)及f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.下列四組函數(shù)中表示同一函數(shù)的是( 。
A.f(x)=$\root{3}{{x}^{3}}$與$g(x)=\sqrt{x^2}$B.f(x)=|x|與$g(x)={({\sqrt{x}})^2}$
C.$f(x)=\sqrt{1-x}×\sqrt{1+x}$與$g(x)=\sqrt{1-{x^2}}$D.f(x)=x0與g(x)=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=(16x-16-x)log2|x|的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案