精英家教網 > 高中數學 > 題目詳情

若焦點在x軸上的橢圓的離心率為,則m等于         

 

【答案】

【解析】

試題分析:即,所以m=.

考點:本題主要考查橢圓的標準方程及幾何性質。

點評:基本題型,注意掌握a,b,c,e的關系。

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

若焦點在x軸上的橢圓 
x2
2
+
y2
m
=1
的離心率為
1
2
,則m=( 。
A、
3
2
B、
3
C、
8
3
D、
2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

若焦點在x軸上的橢圓
x2
3
+
y2
m
=1的離心率為
1
2
,則m=( 。
A、
3
B、
9
4
C、
8
3
D、
2
3

查看答案和解析>>

科目:高中數學 來源: 題型:

若焦點在x軸上的橢圓
x2
k+4
+
y2
9
=1
的離心率為
1
2
,則實數k的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2007•東城區(qū)一模)若焦點在x軸上的橢圓
x2
2
+
y2
m
=1
的離心率為
1
2
,則m=
3
2
3
2

查看答案和解析>>

科目:高中數學 來源: 題型:

若焦點在x軸上的橢圓
x2
45
+
y2
b2
=1
上有一點,使它與兩焦點的連線互相垂直,則正數b的取值范圍是
(0,
3
10
2
]
(0,
3
10
2
]

查看答案和解析>>

同步練習冊答案