拋物線C1的焦點(diǎn)與雙曲線C2的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M.若C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p=( )
A.
B.
C.
D.
【答案】分析:由曲線方程求出拋物線與雙曲線的焦點(diǎn)坐標(biāo),由兩點(diǎn)式寫出過(guò)兩個(gè)焦點(diǎn)的直線方程,求出函數(shù)在x取直線與拋物線交點(diǎn)M的橫坐標(biāo)時(shí)的導(dǎo)數(shù)值,由其等于雙曲線漸近線的斜率得到交點(diǎn)橫坐標(biāo)與p的關(guān)系,把M點(diǎn)的坐標(biāo)代入直線方程即可求得p的值.
解答:解:由,得x2=2py(p>0),
所以拋物線的焦點(diǎn)坐標(biāo)為F().
,得,
所以雙曲線的右焦點(diǎn)為(2,0).
則拋物線的焦點(diǎn)與雙曲線的右焦點(diǎn)的連線所在直線方程為,
①.
設(shè)該直線交拋物線于M(),則C1在點(diǎn)M處的切線的斜率為
由題意可知,得,代入M點(diǎn)得M(
把M點(diǎn)代入①得:
解得p=
故選D.
點(diǎn)評(píng):本題考查了雙曲線的簡(jiǎn)單幾何性質(zhì),考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,函數(shù)在曲線上某點(diǎn)處的切線的斜率等于函數(shù)在該點(diǎn)處的導(dǎo)數(shù),是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C1:y2=4x的焦點(diǎn)與橢圓C2
x2
9
+
y2
b
=1
的右焦點(diǎn)F2重合,F(xiàn)1是橢圓的左焦點(diǎn).
(1)在△ABC中,若A(-4,0),B(0,-3),點(diǎn)C在拋物線y2=4x上運(yùn)動(dòng),求△ABC重心G的軌跡方程;
(2)若P是拋物線C1與橢圓C2的一個(gè)公共點(diǎn),且∠PF1F2=α,∠PF2F1=β,求cosα•cosβ的值及△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年四川省高三下學(xué)期三月月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)F是拋物線C1的焦點(diǎn),點(diǎn)A是拋物線與雙曲線C2的一條漸近線的一個(gè)公共點(diǎn),且軸,則雙曲線的離心率為       

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)

如圖,設(shè)拋物線C1的準(zhǔn)線與x軸交于F1,焦點(diǎn)為F2;以F1,F2為焦點(diǎn),離心率的橢圓C2與拋物線C1x軸上方的交點(diǎn)為P。

當(dāng)m = 1時(shí),求橢圓C2的方程;

當(dāng)△PF1F2的邊長(zhǎng)恰好是三個(gè)連續(xù)的自然數(shù)時(shí),求拋物線方程;此時(shí)設(shè)⊙C1、⊙C2……⊙Cn是圓心在上的一系列圓,它們的圓心縱坐標(biāo)分別為a1,a2……an,已知a1 = 6,a1 > a2 >……> an > 0,又⊙Ckk = 1,2,…,n)都與y軸相切,且順次逐個(gè)相鄰?fù)馇,求?shù)列{an}的通項(xiàng)公式.

(第21題圖)

 
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年山東省高考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

拋物線C1的焦點(diǎn)與雙曲線C2的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M.若C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p=( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案