6.如圖,A1,A2為橢圓$\frac{x^2}{9}+\frac{y^2}{5}=1$長軸的左、右端點,O為坐標原點,S,Q,T為橢圓上不同于A1,A2的三點,直線QA1,QA2,OS,OT圍成一個平行四邊形OPQR,則|OS|2+|OT|2=(  )
A.14B.12C.9D.7

分析 利用橢圓的標準方程及其性質(zhì)、斜率計算公式、兩點之間的距離公式即可得出.

解答 解:設Q(x,y),T(x1,y1),S(x2,y2),QA1,QA2斜率分別為k1,k2,
則OT,OS的斜率為k1,k2,且${k_1}{k_2}=\frac{y}{x+3}•\frac{y}{x-3}=\frac{y^2}{{{x^2}-9}}=-\frac{5}{9}$,
所以$O{T^2}={x_1}^2+{y_1}^2={x_1}^2+{k_1}^2{x_1}^2=\frac{{45({1+{k_1}^2})}}{{5+9{k_1}^2}}$,同理$O{S^2}=\frac{{45({1+{k_2}^2})}}{{5+9{k_2}^2}}$,
因此${|{OS}|^2}+{|{OT}|^2}=\frac{{45({1+{k_1}^2})}}{{5+9{k_1}^2}}+\frac{{45({1+{k_2}^2})}}{{5+9{k_2}^2}}=\frac{{45({1+{k_1}^2})}}{{5+9{k_1}^2}}+\frac{{45({1+\frac{25}{{81{k_1}^2}}})}}{{5+\frac{25}{{9{k_1}^2}}}}$=$\frac{{45({1+{k_1}^2})}}{{5+9{k_1}^2}}+\frac{{81{k_1}^2+25}}{{5+9{k_1}^2}}=\frac{{126{k_1}^2+70}}{{5+9{k_1}^2}}=14$.
故選:A.

點評 本題考查了橢圓的定義標準方程及其性質(zhì)、斜率計算公式、兩點之間的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.執(zhí)行如圖所示的程序框圖,若輸出的S的值為64,則判斷框內(nèi)可填入的條件是(  )
A.k≤3?B.k<3?C.k≤4?D.k>4?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}f(x+1),x<4\\{2^x},x≥4\end{array}\right.$,則f(2+log23)=( 。
A.8B.12C.16D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知集合A={x|x>-1,x∈R},集合B={x|x<2,x∈R},則A∩B=(-1,2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某動物園要為剛入園的小動物建造一間兩面靠墻的三角形露天活動室,地面形狀如圖所示,已知已有兩面墻的夾角為$\frac{π}{3}$(∠ACB=$\frac{π}{3}$),墻AB的長度為6米,(已有兩面墻的可利用長度足夠大),記∠ABC=θ
(1)若θ=$\frac{π}{4}$,求△ABC的周長(結果精確到0.01米);
(2)為了使小動物能健康成長,要求所建的三角形露天活動室面積△ABC的面積盡可能大,問當θ為何值時,該活動室面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.在△ABC中,2cos2A+3=4cosA.
(1)求角A的大。
(2)若a=2,求△ABC的周長l的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知等差數(shù)列{an}的前項和為Sn,且S5=30,則a3=( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.某高中體育小組共有男生24人,其50m跑成績記作ai(i=1,2,…,24),若成績小于6.8s為達標,則如圖所示的程序框圖的功能是( 。
A.求24名男生的達標率B.求24名男生的不達標率
C.求24名男生的達標人數(shù)D.求24名男生的不達標人數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0)的圖象如圖所示,則f(1)+f(2)+f(3)+…+f(2017)=$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案