已知函數(shù)f(x)=log2(|x+1|+|x-2|-m).
(1)當(dāng)m=5時(shí),求函數(shù)f(x)的定義域;
(2)若關(guān)于x的不等式f(x)≥1的解集是R,求m的取值范圍.
【答案】分析:對于(1)當(dāng)m=5時(shí),求函數(shù)f(x)的定義域.根據(jù)m=5和對數(shù)函數(shù)定義域的求法可得到:|x+1|+|x-2|>5,然后分類討論去絕對值號,求解即可得到答案.
對于(2)由關(guān)于x的不等式f(x)≥1,得到|x+1|+|x-2|>m+2.因?yàn)橐阎饧荝,根據(jù)絕對值不等式可得到|x+1|+|x-2|≥3,令m+2<3,求解即可得到答案.
解答:解:(1)由題設(shè)知:當(dāng)m=5時(shí):|x+1|+|x-2|>5,
不等式的解集是以下三個(gè)不等式組解集的并集:
,或,或,
解得函數(shù)f(x)的定義域?yàn)椋?∞,-2)∪(3,+∞);
(2)不等式f(x)≥1即|x+1|+|x-2|>m+2,
∵x∈R時(shí),恒有|x+1|+|x-2|≥|(x+1)-(x-2)|=3,
不等式|x+1|+|x-2|>m+2解集是R,
∴m+2<3,m的取值范圍是(-∞,1).
故答案為(-∞,1).
點(diǎn)評:此題主要考查絕對值不等式的應(yīng)用問題,題中涉及到分類討論的思想,考查學(xué)生的靈活應(yīng)用能力,屬于中檔題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時(shí),若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時(shí),又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時(shí),對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時(shí),函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案