設(shè)橢圓的左、右焦點(diǎn)分別為是橢圓上的一點(diǎn),,原點(diǎn)到直線的距離為.
(Ⅰ)證明;
(Ⅱ)設(shè)為橢圓上的兩個(gè)動(dòng)點(diǎn),,過(guò)原點(diǎn)作直線的垂線,垂足為,求點(diǎn)的軌跡方程.
本小題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線方程、求曲線的方程等基礎(chǔ)知識(shí),考查曲線和方程的關(guān)系等解析幾何的基本思想方法及推理、運(yùn)算能力.
(Ⅰ)證法一:由題設(shè)及,,不妨設(shè)點(diǎn),其中.由于點(diǎn)在橢圓上,有,即.
解得,從而得到.
直線的方程為,整理得.
由題設(shè),原點(diǎn)到直線的距離為,即,
將代入上式并化簡(jiǎn)得,即.
證法二:同證法一,得到點(diǎn)的坐標(biāo)為.
過(guò)點(diǎn)作,垂足為,易知,故.
由橢圓定義得,又,
所以,
解得,而,得,即.
(Ⅱ)解法一:設(shè)點(diǎn)的坐標(biāo)為.
當(dāng)時(shí),由知,直線的斜率為,所以直線的方程為,或,其中,.
點(diǎn)的坐標(biāo)滿足方程組
將①式代入②式,得,
整理得,
于是,.
由①式得
.
由知.將③式和④式代入得,
.
將代入上式,整理得.
當(dāng)時(shí),直線的方程為,的坐標(biāo)滿足方程組
所以,.
由知,即,
解得.
這時(shí),點(diǎn)的坐標(biāo)仍滿足.
綜上,點(diǎn)的軌跡方程為 .
解法二:設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,由,垂足為,可知直線的方程為.
記(顯然),點(diǎn)的坐標(biāo)滿足方程組
由①式得. ③
由②式得. 、
將③式代入④式得.
整理得,
于是. 、
由①式得. 、
由②式得. 、
將⑥式代入⑦式得,
整理得,
于是. ⑧
由知.將⑤式和⑧式代入得,
.
將代入上式,得.
所以,點(diǎn)的軌跡方程為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年四川卷理)設(shè)橢圓的左、右焦點(diǎn)分別是、,離心率,右準(zhǔn)線上的兩動(dòng)點(diǎn)、,且.
(Ⅰ)若,求、的值;
(Ⅱ)當(dāng)最小時(shí),求證與共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分) 已知橢圓的離心率,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切。(I)求a與b;(II)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線且與x軸垂直,動(dòng)直線軸垂直,于點(diǎn)P,求線段PF1的垂直平分線與的交點(diǎn)M的軌跡方程,并指明曲線類(lèi)型。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:四川省高考真題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省黃山市休寧中學(xué)高三(上)數(shù)學(xué)綜合練習(xí)試卷1(文科)(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com