已知函數(shù).
(1) 當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2) 當(dāng)時,函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),求實數(shù)的取值范圍.
(3) 求證:,(其中,是自然對數(shù)的底).
(1) 函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2) .(3)詳見解析.
【解析】
試題分析:本小題主要通過函數(shù)與導(dǎo)數(shù)綜合應(yīng)用問題,具體涉及到用導(dǎo)數(shù)來研究函數(shù)的單調(diào)性等知識內(nèi)容,考查考生的運算求解能力,推理論證能力,其中重點對導(dǎo)數(shù)對函數(shù)的描述進行考查,本題是一道難度較高且綜合性較強的壓軸題,也是一道關(guān)于數(shù)列拆分問題的典型例題,對今后此類問題的求解有很好的導(dǎo)向作用. (1)代入的值,明確函數(shù)解析式,并注明函數(shù)的定義域,然后利用求導(dǎo)研究函數(shù)的單調(diào)性;(2)利用構(gòu)造函數(shù)思想,構(gòu)造,然后利用轉(zhuǎn)化思想,將問題轉(zhuǎn)化為只需,下面通過對進行分類討論進行研究函數(shù)的單調(diào)性,明確最值進而確定的取值范圍.(3)首先利用裂項相消法將不等式的坐標(biāo)進行拆分和整理,然后借助第二問的結(jié)論進行放縮證明不等式.
試題解析::(1) 當(dāng)時,,
,
由解得,由解得.
故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為. (4分)
(2) 因函數(shù)圖象上的點都在所表示的平面區(qū)域內(nèi),
則當(dāng)時,不等式恒成立,即恒成立,、
設(shè)(),只需即可.
由,
(i) 當(dāng)時, ,
當(dāng)時,,函數(shù)在上單調(diào)遞減,故成立.
(ii) 當(dāng)時,由,因,所以,
① 若,即時,在區(qū)間上,,
則函數(shù)在上單調(diào)遞增,在上無最大值,當(dāng)時, ,此時不滿足條件;
② 若,即時,函數(shù)在上單調(diào)遞減,
在區(qū)間上單調(diào)遞增,同樣在上無最大值,當(dāng)時, ,不滿足條件.
(iii) 當(dāng)時,由,∵,∴,
∴,故函數(shù)在上單調(diào)遞減,故成立.
綜上所述,實數(shù)a的取值范圍是. (8分)
(3) 據(jù)(2)知當(dāng)時,在上恒成立
(或另證在區(qū)間上恒成立),
又,
因此
.
. (12分)
考點:(1)導(dǎo)數(shù)來研究函數(shù)的單調(diào)性;(2)不等式證明.
科目:高中數(shù)學(xué) 來源: 題型:
1+bx |
ax+1 |
1 |
a |
e1 |
AB |
e2 |
c |
c |
e1 |
e2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com