f(x)=x3-3x2+2在區(qū)間[-1,1]上的最大值是


  1. A.
    -2
  2. B.
    0
  3. C.
    2
  4. D.
    4
C
分析:由題意先對(duì)函數(shù)y進(jìn)行求導(dǎo),解出極值點(diǎn),然后再根據(jù)函數(shù)的定義域,把極值點(diǎn)和區(qū)間端點(diǎn)值代入已知函數(shù),判斷函數(shù)在區(qū)間上的增減性,比較函數(shù)值的大小,求出最大值,從而求解.
解答:f'(x)=3x2-6x=3x(x-2),
令f'(x)=0可得x=0或2(2舍去),
當(dāng)-1<x<0時(shí),f'(x)>0,
當(dāng)0<x<1時(shí),f'(x)<0,
∴當(dāng)x=0時(shí),f(x)取得最大值為f(0)=2.
故選C
點(diǎn)評(píng):此題考查導(dǎo)數(shù)的定義及利用導(dǎo)數(shù)來(lái)求閉區(qū)間函數(shù)的最值,解題的關(guān)鍵是求導(dǎo)要精確.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•婺城區(qū)模擬)對(duì)于函數(shù)f(x),若存在區(qū)間M=[a,b],使得{y|y=f(x),x∈M}=M,則稱(chēng)區(qū)間M為函數(shù)f(x)的-個(gè)“好區(qū)間”.給出下列4個(gè)函數(shù):
①f(x)=sinx;
②f(x)=|2x-1|;
③f(x)=x3-3x;
④f(x)=lgx+l.
其中存在“好區(qū)間”的函數(shù)是
②③④
②③④
.  (填入相應(yīng)函數(shù)的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3x+m只有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3x-1,
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若直線y=m與y=f(x)的圖象有三個(gè)不同的交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x3+3x.
(1)判斷f(x)的奇偶性,證明你的結(jié)論;
(2)當(dāng)a在何范圍內(nèi)取值時(shí),關(guān)于x的方程f(x)=a在x∈(-1,1]上有解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•朝陽(yáng)區(qū)一模)已知函數(shù)f(x)=-x3+3x
(I)證明:函數(shù)f(x)是奇函數(shù);
(II)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案