【題目】已知.
(1)當函數(shù)在上的最大值為3時,求的值;
(2)在(1)的條件下,若對任意的,函數(shù), 的圖像與直線有且僅有兩個不同的交點,試確定的值.并求函數(shù)在上的單調遞減區(qū)間.
【答案】(1);(2).
【解析】
(1)利用輔助角公式化簡,再利用正弦函數(shù)的圖像和性質求出在上的最大值,即可得到實數(shù)的值;
(2)把的值代入中,求出的最小正周期為,根據(jù)函數(shù)在的圖像與直線有且僅有兩個不同的交點,可得的值為,再由正弦函數(shù)的單調區(qū)間和整體思想求出減區(qū)間,再結合的范圍求出減區(qū)間。
(1)由已知得,
時,
的最大值為,所以;
綜上:函數(shù)在上的最大值為3時,
(2)當時, ,故的最小正周期為,
由于函數(shù)在的圖像與直線有且僅有兩個不同的交點,
故的值為.
又由,可得,
,
∵,
∴函數(shù)在上的單調遞減區(qū)間為.
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
圍建一個面積為360m2的矩形場地,要求矩形場地的一面利用舊墻(利用舊墻需維修),其它三面圍墻要新建,在舊墻的對面的新墻上要留一個寬度為2m的進出口,如圖所示,已知舊墻的維修費用為45元/m,新墻的造價為180元/m,設利用的舊墻的長度為x(單位:元)。
(Ⅰ)將y表示為x的函數(shù);
(Ⅱ)試確定x,使修建此矩形場地圍墻的總費用最小,并求出最小總費用。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】判斷下列命題是全稱量詞命題還是存在量詞命題.
(1)梯形的對角線相等;
(2)存在一個四邊形有外接圓
(3)二次函數(shù)的圖象都與x軸相交;
(4)存在一對實數(shù)x,y,使成立
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左焦點為,短軸的兩個端點分別為A,B,且滿足:,且橢圓經過點
(1)求橢圓的標準方程;
(2)設過點M的動直線(與X軸不重合)與橢圓C相交于P,Q兩點,在X軸上是否存在一定點T,無論直線如何轉動,點T始終在以PQ為直徑的圓上?若有,求點T的坐標,若無,說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(x-1)|x-a|.
(1)若a=-1,解方程f(x)=1;
(2)若函數(shù)f(x)在R上單調遞增,求實數(shù)a的取值范圍;
(3)是否存在實數(shù)a,使不等式f(x)≥2x-3對任意x∈R恒成立?若存在,求出a的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,PA⊥底面ABCD,AD||BC,AD⊥CD,BC=2,AD=CD=1,M是PB的中點.
(1)求證:AM||平面PCD;
(2)求證:平面ACM⊥平面PAB;
(3)若PC與平面ACM所成角為30°,求PA的長.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com