13.比較大。海▁-3)2>x2-6x+8(填入“>”,“<”,“=”之一).

分析 利用乘法公式、作差法即可得出.

解答 解:(x-3)2-(x2-6x+8)
=x2-6x+9-(x2-6x+8)
=1>0,
故答案為:>.

點(diǎn)評(píng) 本題考查了數(shù)的大小比較方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)函數(shù)f(x)=|2x-1|
(1)解關(guān)于x的不等式f(2x)≤f(x+1)
(2)若實(shí)數(shù)a,b滿足a+b=2,求f(a2)+f(b2)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x2+(4a-3)x+3a
(1)當(dāng)a=1,x∈[-1,1]時(shí),求函數(shù)f(x)的值域;
(2)已知a>0且a≠1,若函數(shù)g(x)=$\left\{\begin{array}{l}f(x),x<0\\{log_a}(x+1)+1,x≥0\end{array}$為R上的減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實(shí)數(shù)a、b、c成公差不為零的等差數(shù)列,那么下列不等式不成立的是( 。
A.$|{b-a+\frac{1}{c-b}}|≥2$B.a3b+b3c+c3a≥a4+b4+c4
C.b2≥acD.|b|-|a|≤|c|-|b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知m是4和16的等差中項(xiàng),則m的值是( 。
A.8B.-8C.10D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c且acosC+$\frac{1}{2}$c=b,則∠A=(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{2π}{3}$D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知圓O:x2+y2=16和點(diǎn)M(1,2$\sqrt{2}$),過點(diǎn)M的圓的兩條弦AC,BD互相垂直,則四邊形ABCD面積的最大值( 。
A.4$\sqrt{30}$B.$\sqrt{23}$C.23D.25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在區(qū)間[0,2π)內(nèi),與角$-\frac{3π}{4}$終邊相同的角是$\frac{5π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求下列函數(shù)的定義域:
(1)f(x)=$\frac{x^0}{|x+1|-2}$
(2)f(x)=$\sqrt{x+3}+\frac{1}{x+2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案