函數(shù).
(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;
(Ⅱ)將的圖像向左平移個(gè)單位,再將得到的圖像橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變)后得到的圖像,若的圖像與直線交點(diǎn)的橫坐標(biāo)由小到大依次是求數(shù)列的前2n項(xiàng)的和。
(Ⅰ)的單調(diào)遞減區(qū)間為;(Ⅱ)

試題分析:(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間,首先對(duì)進(jìn)行恒等變化,將它變?yōu)橐粋(gè)角的一個(gè)三角函數(shù),然后利用三角函數(shù)的單調(diào)性,來求函數(shù)的單調(diào)遞減區(qū)間,本題首先通過降冪公式降冪,及倍角公式,得到的關(guān)系式,再利用兩角和的三角函數(shù)公式,得到,從而得到單調(diào)遞減區(qū)間;(Ⅱ)本題由的圖像,根據(jù)圖象的變化規(guī)律得到函數(shù)的圖象;從而求出的解析式,再結(jié)合正弦曲線的對(duì)稱性,周期性求出相鄰兩項(xiàng)的和及其規(guī)律,最后結(jié)合等差數(shù)列的求和公式即可得到結(jié)論.
試題解析:(Ⅰ)

.        4分
,所以
所以的單調(diào)遞減區(qū)間為.      6分
(Ⅱ)將的圖象向左平移個(gè)單位后,
得到.      7分
再將得到的圖象的橫坐標(biāo)變?yōu)樵瓉淼?倍(縱坐標(biāo)不變)后得到, 8分解法一:若函數(shù)的圖象與直線交點(diǎn)的橫坐標(biāo)由小到大依次是
、、、,則由余弦曲線的對(duì)稱性,周期性可知,
   9分
所以
 
.                 12分
解法二:若函數(shù)的圖象與直線交點(diǎn)的橫坐標(biāo)由小到大依次是、、,則.    9分
由余弦曲線的周期性可知,


所以


.        12分的圖象變換.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)平面向量,,函數(shù)。
(Ⅰ)求函數(shù)的值域和函數(shù)的單調(diào)遞增區(qū)間;
(Ⅱ)當(dāng),且時(shí),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù).
(1)求函數(shù)的最大值;
(2)若直線是函數(shù)的對(duì)稱軸,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),.
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

要得到函數(shù)的圖象,只要將函數(shù)的圖象(  )
A.向左平移2個(gè)單位B.向右平移2個(gè)單位
C.向左平移個(gè)單位D.向右平移個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù),則函數(shù)的最小正周期為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的部分圖象如圖所示,則函數(shù)對(duì)應(yīng)的解析式為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

關(guān)于函數(shù),給出下列命題:
的最小正周期為;
在區(qū)間上為增函數(shù);
③直線是函數(shù)圖像的一條對(duì)稱軸;
④對(duì)任意,恒有.
其中正確命題的序號(hào)是____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),直線是函數(shù)圖像的一條對(duì)稱軸,則(   )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案