在數(shù)列在中,,,其中為常數(shù),則的值是       

1解析:∵an=4n,∴a1=.∴Sn==2n2-n.

∴a=2,b=-.

===1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,若a1,a2是正整數(shù),且an=|an-1-an-2|,n=3,4,5,…,則稱(chēng){an}為“絕對(duì)差數(shù)列”.
(Ⅰ)舉出一個(gè)前五項(xiàng)不為零的“絕對(duì)差數(shù)列”(只要求寫(xiě)出前十項(xiàng));
(Ⅱ)若“絕對(duì)差數(shù)列”{an}中,a20=3,a21=0,數(shù)列{bn}滿(mǎn)足bn=an+an+1+an+2,n=1,2,3,…,分別判斷當(dāng)n→∞時(shí),an與bn的極限是否存在,如果存在,求出其極限值;
(Ⅲ)證明:任何“絕對(duì)差數(shù)列”中總含有無(wú)窮多個(gè)為零的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,,當(dāng)時(shí),其前項(xiàng)和滿(mǎn)足

求:;

設(shè),求數(shù)列{}的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知在數(shù)列{an}中,數(shù)學(xué)公式,Sn是其前n項(xiàng)和,且數(shù)學(xué)公式
(1)求{an}的通項(xiàng)公式;
(2)令數(shù)學(xué)公式,記數(shù)列{bn}的前n項(xiàng)和為T(mén)n,求證:Tn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京 題型:解答題

在數(shù)列{an}中,若a1,a2是正整數(shù),且an=|an-1-an-2|,n=3,4,5,…,則稱(chēng){an}為“絕對(duì)差數(shù)列”.
(Ⅰ)舉出一個(gè)前五項(xiàng)不為零的“絕對(duì)差數(shù)列”(只要求寫(xiě)出前十項(xiàng));
(Ⅱ)若“絕對(duì)差數(shù)列”{an}中,a20=3,a21=0,數(shù)列{bn}滿(mǎn)足bn=an+an+1+an+2,n=1,2,3,…,分別判斷當(dāng)n→∞時(shí),an與bn的極限是否存在,如果存在,求出其極限值;
(Ⅲ)證明:任何“絕對(duì)差數(shù)列”中總含有無(wú)窮多個(gè)為零的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:北京高考真題 題型:解答題

在數(shù)列{an}中,若a1,a2是正整數(shù),且an=|an-1-an-2|,n=3,4,5,…,則稱(chēng){an}為“絕對(duì)差數(shù)列”,
(Ⅰ)舉出一個(gè)前五項(xiàng)不為零的“絕對(duì)差數(shù)列”(只要求寫(xiě)出前十項(xiàng));
(Ⅱ)若“絕對(duì)差數(shù)列”{an}中,a20=3,a21=0,數(shù)列{bn}滿(mǎn)足bn=an+an+1+an+2,n=1,2,3,…,分別判斷當(dāng)n→∞時(shí),an與bn的極限是否存在,如果存在,求出其極限值;
(Ⅲ)證明:任何“絕對(duì)差數(shù)列”中總含有無(wú)窮多個(gè)為零的項(xiàng)。

查看答案和解析>>

同步練習(xí)冊(cè)答案