設(shè)F為拋物線y2=4x的焦點(diǎn),A、B、C為拋物線上不同的三點(diǎn),點(diǎn)F是△ABC的重心,O為坐標(biāo)原點(diǎn),△OFA、△OFB、△OFC的面積分別為S1、S2、S3,則則S12+S22+S32=( )
A.9
B.6
C.3
D.2
【答案】分析:確定拋物線y2=4x的焦點(diǎn)F的坐標(biāo),求出S12+S22+S32,利用點(diǎn)F是△ABC的重心,即可求得結(jié)論.
解答:解:設(shè)A、B、C三點(diǎn)的坐標(biāo)分別為(x1,y1),(x2,y2),(x3,y3),則
∵拋物線y2=4x的焦點(diǎn)F的坐標(biāo)為(1,0)
∴S1=,S2=,S3=
∴S12+S22+S32=++)=x1+x2+x3,
∵點(diǎn)F是△ABC的重心
∴x1+x2+x3=3
∴S12+S22+S32=3
故選C.
點(diǎn)評(píng):本題考查拋物線的定義,考查三角形重心的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年全國(guó)卷Ⅱ理)設(shè)F為拋物線y2=4x的焦點(diǎn),A、B、C為該拋物線上三點(diǎn),若=0,則|FA|+|FB|+|FC|=

(A)9               (B)   6                   (C) 4            (D) 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F為拋物線y2=4x的焦點(diǎn),A、B、C為該拋物線上三點(diǎn),若等于

A.9                       B.6                              C.4                              D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12.設(shè)F為拋物線y2=4x的焦點(diǎn),A、B、C為該拋物線上三點(diǎn),若=0,則|FA|+|FB|+|FC|=

(A)9               (B)   6                   (C) 4            (D) 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F為拋物線y2=4x的焦點(diǎn),A、B、C為該拋物線上三點(diǎn),若++=0,則||+||+||的值為                           (  )

A.3         B.4        C.5         D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年龍巖一中模擬理)設(shè)F為拋物線y2=4x的焦點(diǎn),A、B、C為該拋物線上三點(diǎn),若(    )

A.9              B.6                 C.4               D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案