如圖,正三棱柱ABC-A1B1C1的所有棱長都是2,D是棱AC的中點(diǎn),E是棱CC1的中點(diǎn),AE交A1D于點(diǎn)H.

(1)求證:AE⊥平面A1BD;

(2)求二面角D-BA1-A的大小(用反三角函數(shù)表示);

(3)求點(diǎn)B1到平面A1BD的距離.

答案:
解析:

  (1)證明:建立如圖所示,

  

  

  ∵…………4分

  

  ∴

  即AE⊥A1D,AE⊥BD ∴AE⊥面A1BD

  (2)設(shè)面DA1B的法向量為

  由 ∴取

  設(shè)面AA1B的法向量為…4分

  

  

  由圖可知二面角D-BA1-A為銳角,

  ∴它的大小為arcos

  (3),平面A1BD的法向量取

  則B1到平面A1BD的距離d=…………4分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1各棱長都等于a,E是BB1的中點(diǎn).
(1)求直線C1B與平面A1ABB1所成角的正弦值;
(2)求證:平面AEC1⊥平面ACC1A1;
(3)求點(diǎn)C1到平面AEC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1的各棱長都2,E,F(xiàn)分別是AB,A1C1的中點(diǎn),則EF的長是( 。
A、2
B、
3
C、
5
D、
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥面A1BD;
(Ⅱ)設(shè)點(diǎn)O為AB1上的動(dòng)點(diǎn),當(dāng)OD∥平面ABC時(shí),求
AOOB1
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1中(注:底面為正三角形且側(cè)棱與底面垂直),BC=CC1=2,P,Q分別為BB1,CC1的中點(diǎn).
(Ⅰ)求多面體ABC-A1PC1的體積;
(Ⅱ)求A1Q與BC1所成角的大小.

查看答案和解析>>

同步練習(xí)冊答案