(2013•陜西)對(duì)一批產(chǎn)品的長(zhǎng)度(單位:mm)進(jìn)行抽樣檢測(cè),下圖為檢測(cè)結(jié)果的頻率分布直方圖.根據(jù)標(biāo)準(zhǔn),產(chǎn)品長(zhǎng)度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)和[30,35)上的為三等品.用頻率估計(jì)概率,現(xiàn)從該批產(chǎn)品中隨機(jī)抽取一件,則其為二等品的概率為( 。
分析:在頻率分布表中,頻數(shù)的和等于樣本容量,頻率的和等于1,小矩形的面積等于這一組的頻率,則所以面積和為1,建立等量關(guān)系即可求得長(zhǎng)度在[25,30)內(nèi)的頻率即得.
解答:解:設(shè)長(zhǎng)度在[25,30)內(nèi)的頻率為a,
根據(jù)頻率分布直方圖得:a+5×0.02+5×0.06+5×0.03=1?a=0.45.
則根據(jù)頻率分布直方圖估計(jì)從該批產(chǎn)品中隨機(jī)抽取一件,則其為二等品的概率為0.45.
故選D.
點(diǎn)評(píng):本小題主要考查樣本的頻率分布直方圖的知識(shí)和分析問題以及解決問題的能力.統(tǒng)計(jì)初步在近兩年高考中每年都以小題的形式出現(xiàn),基本上是低起點(diǎn)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•陜西)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•陜西)設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,若bcosC+ccosB=asinA,則△ABC的形狀為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•陜西)在一場(chǎng)娛樂晚會(huì)上,有5位民間歌手(1至5號(hào))登臺(tái)演唱,由現(xiàn)場(chǎng)數(shù)百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨(dú)立地在選票上選3名歌手,其中觀眾甲是1號(hào)歌手的歌迷,他必選1號(hào),不選2號(hào),另在3至5號(hào)中隨機(jī)選2名.觀眾乙和丙對(duì)5位歌手的演唱沒有偏愛,因此在1至5號(hào)中隨機(jī)選3名歌手.
(Ⅰ) 求觀眾甲選中3號(hào)歌手且觀眾乙未選中3號(hào)歌手的概率;
(Ⅱ) X表示3號(hào)歌手得到觀眾甲、乙、丙的票數(shù)之和,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•陜西)設(shè)Sn表示數(shù)列{an}的前n項(xiàng)和.
(Ⅰ) 若{an}為等差數(shù)列,推導(dǎo)Sn的計(jì)算公式;
(Ⅱ) 若a1=1,q≠0,且對(duì)所有正整數(shù)n,有Sn=
1-qn1-q
.判斷{an}是否為等比數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案