13、類(lèi)比平面幾何中的勾股定理:若直角三角形ABC中的兩邊AB、AC互相垂直,則三角形三邊長(zhǎng)滿足關(guān)系:AB2+AC2=BC2.若三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則三棱錐的側(cè)面積與底面積滿足的關(guān)系為
SBCD2=SABC2+SACD2+SADB2
分析:斜邊的平方等于兩個(gè)直角邊的平方和,可類(lèi)比到空間就是斜面面積的平方等于三個(gè)直角面的面積的平方和,邊對(duì)應(yīng)著面.
解答:解:由邊對(duì)應(yīng)著面,邊長(zhǎng)對(duì)應(yīng)著面積,由類(lèi)比可得SBCD2=SABC2+SACD2+SADB2
點(diǎn)評(píng):本題考查了從平面類(lèi)比到空間,屬于基本類(lèi)比推理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東佛山市高二第一學(xué)段理數(shù)學(xué)試卷(解析版) 題型:填空題

類(lèi)比平面幾何中的勾股定理:若直角三角形ABC中的兩邊AB、AC互相垂直,則三角形三邊長(zhǎng)之間滿足關(guān)系:。若三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則三棱錐的側(cè)面積與底面積之間滿足的關(guān)系為             .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年陜西省高二下期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

類(lèi)比平面幾何中的勾股定理:若直角三角形ABC中的兩邊AB、AC互相垂直,則三角形三邊長(zhǎng)之間滿足關(guān)系:.若三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則三棱錐的側(cè)面積與底面積之間滿足的關(guān)系為    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆浙江省杭州市蕭山五校高二下期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:填空題

類(lèi)比平面幾何中的勾股定理:若直角三角形ABC中的兩邊AB、AC互相垂直,則三角形三邊長(zhǎng)之間滿足關(guān)系:。若三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則三棱錐的側(cè)面積與底面積之間滿足的關(guān)系為_(kāi)___________。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年山東省煙臺(tái)市萊州一中高二(下)期末數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

類(lèi)比平面幾何中的勾股定理:若直角三角形ABC中的兩邊AB、AC互相垂直,則三角形三邊長(zhǎng)滿足關(guān)系:AB2+AC2=BC2.若三棱錐A-BCD的三個(gè)側(cè)面ABC、ACD、ADB兩兩互相垂直,則三棱錐的側(cè)面積與底面積滿足的關(guān)系為   

查看答案和解析>>

同步練習(xí)冊(cè)答案