已知數(shù)列{an}中,a1=4,an+1=2(an-n+1).
(1)求證:數(shù)列{an-2n}為等比數(shù)列;
(2)設(shè)數(shù)列{an}的前n項(xiàng)的和為Sn,若Sn≥an+2n2,求:正整數(shù)n的最小值.
【答案】分析:(1)欲證數(shù)列{an-2n}為等比數(shù)列,只需證得an+1-2(n+1)=2(an-2n),根據(jù)等式an+1=2(an-n+1)變形可得結(jié)論;
(2)根據(jù)(1)先求出an,從而求出Sn,然后代入不等式Sn≥an+2n2,從而求出正整數(shù)n的最小值.
解答:(1)證明:∵an+1=2(an-n+1)
∴an+1-2(n+1)=2(an-2n)
∴{an-2n} 為等比數(shù)列;
(2)解:由(1)知,
an-2n=2n
∴an=2n+2n
∴Sn=2n+1+n2+n-2
由Sn≥an+2n2
可得2n+1+n2+n-2≥2n+2n+2n2,
∴2n≥n2+n+2
∴正整數(shù)n的最小值為5.
點(diǎn)評(píng):本題主要考查了數(shù)列的求和,以及等比關(guān)系的確定,同時(shí)考查了計(jì)算能力,屬于中檔題.