定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(x)•f(x+2)=6,若f(3)=2,則f(2013)的值為________.

3
分析:由于f(x)•f(x+2)=6,以x+2代x得f(x+2)•f(x+4)=6,所以f(x)=f(x+4).函數(shù)f(x)是周期函數(shù),4是一個周期.在f(x)•f(x+2)=6中,令x=1
得出f(1),f(3)關(guān)系式,求解即可.
解答:由于f(x)•f(x+2)=6,以x+2代x得f(x+2)•f(x+4)=6
所以f(x)=f(x+4).函數(shù)f(x)是周期函數(shù),4是一個周期.
f(2013)=f(503×4+1)=f(1)
又在f(x)•f(x+2)=6中,令x=1得出f(1)•f(3)=6,而若f(3)=2
所以f(1)=3,即f(2013)=3
故答案為:3
點(diǎn)評:本題考查抽象函數(shù)求值,一般令相關(guān)字母準(zhǔn)確賦值,利用關(guān)系式求解.本題發(fā)掘出周期性很關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=1,且f(x)的導(dǎo)數(shù)f'(x)在R上恒有f′(x)
1
2
(x∈R),則不等式f(x2)<
x2
2
+
1
2
的解集為( 。
A、(1,+∞)
B、(-∞,-1)
C、(-1,1)
D、(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集R上的函數(shù)f(x)=ax3+bx2+cx+d,其中a,b,c,d是實(shí)數(shù).
(1)若函數(shù)f(x)在區(qū)間(-∞,-1)和(3,+∞)上都是增函數(shù),在區(qū)間(-1,3)上是減函數(shù),并且f(0)=-7,f′(0)=-18,求函數(shù)f(x)的表達(dá)式;
(2)若a,b,c滿足b2-3ac<0,求證:函數(shù)f(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

23、已知定義在實(shí)數(shù)集R上的函數(shù)f(x),其導(dǎo)函數(shù)為f'(x),滿足兩個條件:①對任意實(shí)數(shù)x,y都有f(x+y)=f(x)+f(y)+2xy成立;②f'(0)=2.
(1)求函數(shù)的f(x)的表達(dá)式;
(2)對任意x1,x2∈[-1,1],求證:|f(x1)-f(x2)|≤4|x1-x2|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在實(shí)數(shù)集R上的函數(shù)f(x)滿足f(1)=2,且f(x)的導(dǎo)數(shù)f'(x)在R上恒有f'(x)<2,則不等式f(2x)<4x的解集為
{x|x>
1
2
}
{x|x>
1
2
}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在實(shí)數(shù)集R上的函數(shù)f(x),如果存在函數(shù)g(x)=Ax+B(A,B為常數(shù))使得f(x)≥g(x)對任意的x∈R都成立,則稱g(x)為函數(shù)f(x)的一個承托函數(shù),則下列說法正確的是(  )
A、函數(shù)f(x)=x2-2x不存在承托函數(shù)
B、g(x)=x為函數(shù)f(x)=sinx的一個承托函數(shù)
C、g(x)=x為函數(shù)f(x)=ex-1的一個承托函數(shù)
D、函數(shù)f(x)=
2x
x2-x+1
不存在承托函數(shù)

查看答案和解析>>

同步練習(xí)冊答案