若命題p:?x∈(-
π
2
π
2
)
,tanx>sinx,則命題¬p為( 。
分析:根據(jù)含有量詞的命題的否定,即可得到命題的否定.
解答:解:命題p為全稱命題,根據(jù)全稱命題的否定是特稱命題可知:
¬p:?x0∈(-
π
2
π
2
)
,tanx0≤sinx0
故選:C.
點評:本題主要考查含有量詞的命題的否定,要求熟練掌握,全稱命題的否定是特稱命題,特稱命題的否定是全稱命題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列結(jié)論:
①若命題p:?x∈R,tanx=1;命題q:?x∈R,x2-x+1>0.則命題“p∧?q”是假命題.
②已知直線l1:ax+3y-1=0,l2:x+by+1=0,則l1⊥l2的充要條件是
a
b
=-3.
③命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”.
④任意的銳角三角形ABC中,有sinA>cosB成立;
⑤直線x=
π
12
是函數(shù)y=2sin(2x-
π
6
)
的圖象的一條對稱軸
其中正確結(jié)論的序號為
 
.(把你認(rèn)為正確的命題序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下四個命題:
①△ABC中,“A>B”是“sinA>sinB”的充要條件;
②若命題P:?x∈R,sinx≤1,則?P:?x∈R,sinx<1,
③不等式10x>x2在(0,+∞)上恒成立;
④設(shè)有四個函數(shù)y=x-1,y=x
12
,y=x2,y=x3
其中在(0,+∝)上是增函數(shù)的函數(shù)有3個.
其中真命題的序號
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確的是
①③
①③

(1)平面向量
a
b
的夾角為60°,
a
=(2,0)
|
b
|=1
,則|
a
+
b
|
=
7

(2)若x≠0,則x+
1
x
≥2

(3)若命題p:“?x∈R,x2-x-1>0”,則命題p的否定為“?x∈R,x2-x-1≤0
(4)“a=1是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若命題P:“?x∈R,cos2x≤cos2x”,則?P為
?x0∈R,cos2x0>cos2x0
?x0∈R,cos2x0>cos2x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列結(jié)論:
①若命題p:?x∈R,tanx=1,命題q:?x∈R,x2-x+1>0,則命題“p∧q“是假命題 
②a+b>0成立的必要條件是a>0,b>0 
③若點O和點F分別為橢圓
x2
4
+
y2
3
=1
的中心和左焦點,點P為橢圓上任一點,則
OP
FP
的最大值為6 
④五進(jìn)制的數(shù)412化為十進(jìn)制的數(shù)為106 
⑤已知函數(shù)f(x)在(-∞,+∞)為增函數(shù),a,b∈R,若f(a)+f(b)≥f(-a)+f(-b),則a+b≥0.
則其中正確結(jié)論的序號為
 

查看答案和解析>>

同步練習(xí)冊答案