在長(zhǎng)為10,寬為6的矩形內(nèi)畫一個(gè)內(nèi)切橢圓,切點(diǎn)為各邊的中點(diǎn),則此橢圓的離心率為( 。
分析:由題設(shè)知此橢圓的長(zhǎng)軸為10,短軸為6,由此能求出它的離心率.
解答:解:設(shè)橢圓方程為
x2
a2
+
y2
b2
=1
,a>b>0
由題設(shè)知,2a=10,2b=6,
∴c=
(
10
2
)2-(
6
2
)2
=4,
∴e=
c
a
=
4
5

故選A.
點(diǎn)評(píng):本題考查橢圓的離心率的求法,解題要熟練掌握橢圓的簡(jiǎn)單性質(zhì),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某房地產(chǎn)開發(fā)公司計(jì)劃在一樓區(qū)內(nèi)建造一個(gè)長(zhǎng)方形公園ABCD,公園由長(zhǎng)方形的休閑區(qū)A1B1C1D1(陰影部分)和環(huán)公園人行道組成。已知休閑區(qū)A1B1C1D1的面積為4000平方米,人行道的寬分別為4米和10米。

(1)若設(shè)休閑區(qū)的長(zhǎng)米,求公園ABCD所占面積S關(guān)于的函數(shù)的解析式;(6分  )

 


(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長(zhǎng)和寬該如何設(shè)計(jì)?(6分  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014屆湖北省三校聯(lián)考高一下學(xué)期期中理科聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

某化工廠擬建一座平面圖形為矩形且面積為162平方米的三級(jí)污水處理池,池的深度一定(平面圖如圖所示).如果池四周圍墻建造單價(jià)為400元/米,中間兩道隔墻建造單價(jià)為248元/米,池底建造單價(jià)為80元/米2,水池所有墻的厚度忽略不計(jì),試設(shè)計(jì)污水處理池的長(zhǎng)和寬,使總造價(jià)最低,并求出最低總造價(jià)。

【解析】本試題主要考查導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。首先設(shè)變量

設(shè)寬為則長(zhǎng)為,依題意,總造價(jià)

      

  當(dāng)且僅當(dāng)取等號(hào)

(元)得到結(jié)論。

設(shè)寬為則長(zhǎng)為,依題意,總造價(jià)

     ………6分

  當(dāng)且僅當(dāng)取等號(hào)

(元)……………………10分

故當(dāng)處理池寬為10米,長(zhǎng)為16.2米時(shí)能使總造價(jià)最低,且最低總造價(jià)為38880元

 

查看答案和解析>>

同步練習(xí)冊(cè)答案