下列函數(shù)中,在定義域內(nèi)既是偶函數(shù)又在(0,+∞)上單調(diào)遞增的是( 。
A、y=x3
B、y=3x
C、y=cosx
D、y=ln|x|
考點(diǎn):函數(shù)奇偶性的判斷,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)的奇偶性和單調(diào)性的定義和性質(zhì)分別判斷每個(gè)函數(shù)的奇偶性和單調(diào)性即可.
解答: 解:A.函數(shù)y=x3為奇函數(shù),在(0,+∞)上單調(diào)遞增,所以A不合適.
B.y=3x是非奇非偶函數(shù),所以B不合適.
C,函數(shù)y=cosx為偶數(shù),但在(0,+∞)上不單調(diào),所以C不合適.
D.函數(shù)y=ln|x|為偶函數(shù),在(0,+∞)上單調(diào)遞增,所以D合適.
故選D.
點(diǎn)評(píng):本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,要求熟練掌握常見基本函數(shù)的奇偶性和單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:log318-log32+2log52•log25.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)tanα、tanβ是方程x2+x-2=0的兩實(shí)數(shù)根,則tan(α+β)的值為( 。
A、-1
B、-
1
3
C、
1
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第二象限角,P(x,
5
)為其終邊上一點(diǎn),且cosα=
2
4
x,則x=( 。
A、
3
B、±
3
C、-
2
D、-
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{log2(an-1)}(n∈N*)為等差數(shù)列,且a1=3,a2=5.
(1)求{an}的通項(xiàng)公式.
(2)求
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
關(guān)于n的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的個(gè)數(shù)是( 。
①集合N中最小數(shù)為0;
②π∈Q;
③空集是由0為元素的集合;
④所有的正數(shù)組成一個(gè)集合.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A、B、C、D是河兩岸的四根電線桿,A、B在河這邊,C、D在河對(duì)岸,現(xiàn)在距離A處150m的B處測(cè)得∠ABD=30°,∠DBC=60°,而在A處測(cè)得∠BAC=45°,∠CAD=60°,求C、D兩點(diǎn)間的距離.(已知A、B、C、D在同一平面內(nèi)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,證明:(a2+b2+ab)(ab2+a2b+1)≥9a2b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在“由于任何數(shù)的平方都是非負(fù)數(shù),所以(2i)2≥0”這一推理中,產(chǎn)生錯(cuò)誤的原因是( 。
A、推理的形式不符合三段論的要求
B、大前提錯(cuò)誤
C、小前提錯(cuò)誤
D、推理的結(jié)果錯(cuò)誤

查看答案和解析>>

同步練習(xí)冊(cè)答案