數(shù)列{an+1-an}是一個首項為2,公差為2的等差數(shù)列,a1=1,若43<am<73,則m=( 。
分析:先由等差數(shù)列求得an+1-an=2n,然后疊加求an,再解不等式即可.
解答:解:∵{an+1-an}是等差數(shù)列,首項為2,公差為2
∴an+1-an=2+(n-1)×2=2n
當n≥2時,
a2-a1=2
a3-a2=4

an-an-1=2(n-1)
將上面n-1個等式兩邊相加:
an-a1=2+4+…+2(n-1)=n2-n
又a1=1
∴an=n2;-n+1  (n∈N*)
∵43<am<73 m∈N*
∴7<m<9
∴m=8
故選:C.
點評:此題考查了等差數(shù)列的形式,求出an是解題的關鍵,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

4、給定項數(shù)為m(m∈N*,m≥3)的數(shù)列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數(shù)k(2≤k≤m-1),若數(shù)列{an}中存在連續(xù)的k項和該數(shù)列中另一個連續(xù)的k項恰好按次序?qū)嗟,則稱數(shù)列{an}是“k階可重復數(shù)列”,例如數(shù)列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序?qū)嗟,所以?shù)列{an}是“4階可重復數(shù)列”.
(Ⅰ)分別判斷下列數(shù)列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數(shù)列”?如果是,請寫出重復的這5項;
(Ⅱ)若數(shù)為m的數(shù)列{an}一定是“3階可重復數(shù)列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數(shù)列{an}不是“5階可重復數(shù)列”,若在其最后一項am后再添加一項0或1,均可使新數(shù)列是“5階可重復數(shù)列”,且a4=1,求數(shù)列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

給定項數(shù)為m(m∈N*,m≥3)的數(shù)列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數(shù)k(2≤k≤m-1),若數(shù)列{an}中存在連續(xù)的k項和該數(shù)列中另一個連續(xù)的k項恰好按次序?qū)嗟龋瑒t稱數(shù)列{an}是“k階可重復數(shù)列”,例如數(shù)列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序?qū)嗟龋詳?shù)列{an}是“4階可重復數(shù)列”.
(Ⅰ)分別判斷下列數(shù)列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數(shù)列”?如果是,請寫出重復的這5項;
(Ⅱ)若數(shù)為m的數(shù)列{an}一定是“3階可重復數(shù)列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數(shù)列{an}不是“5階可重復數(shù)列”,若在其最后一項am后再添加一項0或1,均可使新數(shù)列是“5階可重復數(shù)列”,且a4=1,求數(shù)列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年北京市海淀區(qū)高三(上)期末數(shù)學試卷(理科)(解析版) 題型:解答題

給定項數(shù)為m(m∈N*,m≥3)的數(shù)列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數(shù)k(2≤k≤m-1),若數(shù)列{an}中存在連續(xù)的k項和該數(shù)列中另一個連續(xù)的k項恰好按次序?qū)嗟,則稱數(shù)列{an}是“k階可重復數(shù)列”,例如數(shù)列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序?qū)嗟龋詳?shù)列{an}是“4階可重復數(shù)列”.
(Ⅰ)分別判斷下列數(shù)列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數(shù)列”?如果是,請寫出重復的這5項;
(Ⅱ)若數(shù)為m的數(shù)列{an}一定是“3階可重復數(shù)列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數(shù)列{an}不是“5階可重復數(shù)列”,若在其最后一項am后再添加一項0或1,均可使新數(shù)列是“5階可重復數(shù)列”,且a4=1,求數(shù)列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年高考模擬數(shù)學專題:壓軸大題(解析版) 題型:解答題

給定項數(shù)為m(m∈N*,m≥3)的數(shù)列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數(shù)k(2≤k≤m-1),若數(shù)列{an}中存在連續(xù)的k項和該數(shù)列中另一個連續(xù)的k項恰好按次序?qū)嗟,則稱數(shù)列{an}是“k階可重復數(shù)列”,例如數(shù)列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序?qū)嗟龋詳?shù)列{an}是“4階可重復數(shù)列”.
(Ⅰ)分別判斷下列數(shù)列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數(shù)列”?如果是,請寫出重復的這5項;
(Ⅱ)若數(shù)為m的數(shù)列{an}一定是“3階可重復數(shù)列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數(shù)列{an}不是“5階可重復數(shù)列”,若在其最后一項am后再添加一項0或1,均可使新數(shù)列是“5階可重復數(shù)列”,且a4=1,求數(shù)列{an}的最后一項am的值.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學專項復習:創(chuàng)新題(2)(解析版) 題型:解答題

給定項數(shù)為m(m∈N*,m≥3)的數(shù)列{an},其中ai∈{0,1}(i=1,2,…,m).若存在一個正整數(shù)k(2≤k≤m-1),若數(shù)列{an}中存在連續(xù)的k項和該數(shù)列中另一個連續(xù)的k項恰好按次序?qū)嗟,則稱數(shù)列{an}是“k階可重復數(shù)列”,例如數(shù)列{an}:0,1,1,0,1,1,0.因為a1,a2,a3,a4與a4,a5,a6,a7按次序?qū)嗟,所以?shù)列{an}是“4階可重復數(shù)列”.
(Ⅰ)分別判斷下列數(shù)列
①{bn}:0,0,0,1,1,0,0,1,1,0.
②{cn}:1,1,1,1,1,0,1,1,1,1.是否是“5階可重復數(shù)列”?如果是,請寫出重復的這5項;
(Ⅱ)若數(shù)為m的數(shù)列{an}一定是“3階可重復數(shù)列”,則m的最小值是多少?說明理由;
(Ⅲ)假設數(shù)列{an}不是“5階可重復數(shù)列”,若在其最后一項am后再添加一項0或1,均可使新數(shù)列是“5階可重復數(shù)列”,且a4=1,求數(shù)列{an}的最后一項am的值.

查看答案和解析>>

同步練習冊答案