14.動圓:(x-2m)2+(y+5m)2=9的圓心軌跡方程為5x+2y=0.

分析 (x-2m)2+(y+5m)2=9的圓心的坐標(biāo)為(2m,-5m),消參可得結(jié)論.

解答 解:(x-2m)2+(y+5m)2=9的圓心的坐標(biāo)為(2m,-5m),
設(shè)圓心的坐標(biāo)為(x,y),則5x+2y=0.
故答案為:5x+2y=0.

點(diǎn)評 本題考查圓的方程,考查軌跡方程,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.要得到函數(shù)f(x)=2sinxcosx,x∈R的圖象,只需將函數(shù)g(x)=2cos2x-1,x∈R的圖象( 。
A.向左平移$\frac{π}{2}$個單位B.向右平移$\frac{π}{2}$個單位
C.向左平移$\frac{π}{4}$個單位D.向右平移$\frac{π}{4}$個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.把38化為二進(jìn)位制數(shù)為100110(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知關(guān)于x的不等式x2+ax+b<0的解集為(1,2),則關(guān)于x的不等式bx2+ax+1>0的解集為$(-∞,\frac{1}{2})∪(1,+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知數(shù)列{$\frac{a_n}{n}$}是公差為2的等差數(shù)列,且a1=-8,則數(shù)列{an}的前n項(xiàng)和Sn取得最小值時,n的值為4或5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C:$\frac{x^2}{a^2}$+y2=1(a>0)的左右焦點(diǎn)分別為F1,F(xiàn)2,過橢圓C的右頂點(diǎn)和上頂點(diǎn)的直線l與圓x2+y2=$\frac{2}{3}$相切,橢圓C過點(diǎn)P(1,$\frac{{\sqrt{2}}}{2}$),直線PF1交y軸于Q,且$\overrightarrow{P{F_2}}$=2$\overrightarrow{QO}$,O為坐標(biāo)原點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)M是橢圓C的上頂點(diǎn),過點(diǎn)M分別作直線MA、MB交橢圓C于A、B兩點(diǎn),設(shè)這兩條直線的斜率分別為k1,k2,且k1+k2=2,證明:證明AB過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)直線l1:(a-1)x-4y=1,l2:(a+1)x+3y=2,l3:x-2y=3.
(1)若直線l1的傾斜角為135°,求實(shí)數(shù)a的值;
(2)若l2∥l3,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知$\vec a$=(2,-1),$\vec b$=(λ,3),若$\vec a$與$\vec b$垂直,則λ的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知兩條平行直線l1:$\sqrt{3}$x-y+1=0與l2:$\sqrt{3}$x-y+3=0.
(1)若直線m經(jīng)過點(diǎn)(${\sqrt{3}$,4),且被l1,l2所截得線段長為2,求直線m的方程;
(2)若直線n與l1,l2都垂直,且與坐標(biāo)軸圍成三角形面積是2$\sqrt{3}$,求直線n的方程.

查看答案和解析>>

同步練習(xí)冊答案