一次期末考試,學(xué)校隨機(jī)抽取了一批學(xué)生的物理成績(滿分100分),經(jīng)統(tǒng)計(jì),這批抽取的學(xué)生的成績?nèi)拷橛?5分到100分之間,現(xiàn)將數(shù)據(jù)分成以下7組:第1組[65,70],第2組[70,75],第3組[75,80],第4組[80.85],第5組[85,90],第6組[90,95],第7組[95,100],得到如圖所示的頻率分布直方圖(不完整).
(1)求第2組的頻率并補(bǔ)全頻率分布直方圖;
(2)現(xiàn)按成績采用分層抽樣的方法從第2,3,4組中隨機(jī)抽取30名學(xué)生,求每組抽取的人數(shù).
考點(diǎn):頻率分布直方圖,分層抽樣方法
專題:概率與統(tǒng)計(jì)
分析:(1)根據(jù)所有頻率之和等于1求出第2組的頻率,然后繪圖即可;
(2)先計(jì)算出2,3,4組中學(xué)生的比例,進(jìn)而按比例可得每組抽取的人數(shù).
解答: 解:(1)由頻率分布直方圖知第2組頻率為:f2=1-(0.01×3+0.02+0.04+0.06)×5=0.25;
故第二組矩形的高為
0.25
5
=0.05,
故頻率分布直方圖如下圖所示:

(2)∵第2,3,4組對(duì)應(yīng)的矩形高之比為:0.05:0.06:0.04=5:6:4,
故用分層抽樣的方法從第2,3,4組中隨機(jī)抽取30名學(xué)生時(shí),
第2組應(yīng)抽取30×
5
5+6+4
=10人,
第2組應(yīng)抽取30×
6
5+6+4
=12人,
第2組應(yīng)抽取30×
4
5+6+4
=8人.
點(diǎn)評(píng):本題主要考查了頻率分布直方圖、分層抽樣,是概率的簡單綜合應(yīng)用,難度不大,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若事件A、B相互獨(dú)立,且P(A)=
1
2
,P(B)=
1
5
,則P(A∩B)=(  )
A、
1
10
B、
7
10
C、
1
2
D、
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)P為曲線y2=
3
4
x上任一點(diǎn),F(xiàn)1(-5,0),F(xiàn)2(5,0),則下列命題正確的是(  )
A、||PF1|-|PF2||≥8
B、||PF1|-|PF2||≤8
C、||PF1|-|PF2||>8
D、||PF1|-|PF2||<8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
ex
x
在區(qū)間[
1
2
,2]上的最小值為( 。
A、2
e
B、
1
2
e2
C、
1
e
D、e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:
日期 3月1日 3月2日 3月3日 3月4日 3月5日
溫差x(℃) 10 11 13 12 9
發(fā)芽數(shù)y(顆) 23 25 30 26 16
(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件“m,n均小于26”的概率;
(2)請(qǐng)根據(jù)3月1日至3月5日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程.
(參考數(shù)據(jù):
.
x
=
1
5
(10+13+12+9)=11,
.
y
=
1
5
(23+25+30+26+16)=24)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6

(1)求函數(shù)f(x)的周期
(2)若α∈(0,
π
2
),β∈(π,2π),f(
α
2
-
π
12
)=
8
5
,f(
β
2
+
π
6
)=
10
13
,求cos(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差不為零的等差數(shù)列{an},滿足a3=5且a1,a2,a4成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
anan+1
,記數(shù)列{bn}前n項(xiàng)的和為Tn,當(dāng)Tn≤λ恒成立時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=(ax+3)2,(a∈R),求證:f(1),f(2)至少有一個(gè)大于或等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t+3
y=3-t
(參數(shù)t∈R),圓C的參數(shù)方程為
x=cosθ
y=2sinθ+2
(參數(shù)θ∈[0,2π]),則圓C的圓心坐標(biāo)為
 
,圓心到直線l的距離為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案