精英家教網 > 高中數學 > 題目詳情
函數f(x)=x2-2ax+3在區(qū)間[-2,4]的值域為[f(a),f(4)],則實數a的取值范圍為   
【答案】分析:由題意可得,二次函數f(x)=x2-2ax+3的對稱軸為x=a,且-2≤a≤4,且4-a≥a+2,由此求得實數a的取值范圍.
解答:解:由于二次函數f(x)=x2-2ax+3的對稱軸為x=a,而且函數f(x)=x2-2ax+3在區(qū)間[-2,4]的值域為[f(a),f(4)],
故對稱軸在所給的區(qū)間內,即-2≤a≤4 ①;且區(qū)間的右端點到對稱軸的距離大于或等于左端點到對稱軸的距離,即4-a≥a+2 ②.
解由①②組成的不等式組,求得-2≤a≤1,
故答案為[-2,1].
點評:本題主要考查求二次函數在閉區(qū)間上的最值,二次函數的性質的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x2-ax+4+2lnx
(I)當a=5時,求f(x)的單調遞減函數;
(Ⅱ)設直線l是曲線y=f(x)的切線,若l的斜率存在最小值-2,求a的值,并求取得最小斜率時切線l的方程;
(Ⅲ)若f(x)分別在x1、x2(x1≠x2)處取得極值,求證:f(x1)+f(x2)<2.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=x2+2x在[m,n]上的值域是[-1,3],則m+n所成的集合是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知二次函數f(x)=x2-2x-3的圖象為曲線C,點P(0,-3).
(1)求過點P且與曲線C相切的直線的斜率;
(2)求函數g(x)=f(x2)的單調遞增區(qū)間.

查看答案和解析>>

科目:高中數學 來源: 題型:

函數f(x)=-x2+2x,x∈(0,3]的值域為
[-3,1]
[-3,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=x2+
12
x
+lnx的導函數為f′(x),則f′(2)=
5
5

查看答案和解析>>

同步練習冊答案