從甲,乙,丙,丁4名學(xué)生參加數(shù)學(xué)、寫作、英語三科競賽,每科至少1人(且每人僅報(bào)一科),若學(xué)生甲,乙不能同時(shí)參加同一競賽,則不同的參賽方案共有    .(用數(shù)字作答)
【答案】分析:先不考慮學(xué)生甲,乙不能同時(shí)參加同一競賽,從4人中選出兩個(gè)人作為一個(gè)元素,同其他兩個(gè)元素在三個(gè)位置上排列,其中有不符合條件的,即甲乙兩人在同一位置,去掉即可.
解答:解:從4人中選出兩個(gè)人作為一個(gè)元素有C42種方法,
同其他兩個(gè)元素在三個(gè)位置上排列C42A33=36,
其中有不符合條件的,
即學(xué)生甲,乙同時(shí)參加同一競賽有A33種結(jié)果,
∴不同的參賽方案共有 36-6=30,
故答案為:30.
點(diǎn)評:對于復(fù)雜一點(diǎn)的排列計(jì)數(shù)問題,有時(shí)要先整體再部分,有時(shí)排列組合和分步計(jì)數(shù)原理,分類計(jì)數(shù)原理一起出現(xiàn),有時(shí)分類以后,每類方法并不都是一步完成的,必須在分類后又分步,綜合利用兩個(gè)原理解決,即類中有步,步中有類.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、從甲,乙,丙,丁4名學(xué)生參加數(shù)學(xué)、寫作、英語三科競賽,每科至少1人(且每人僅報(bào)一科),若學(xué)生甲,乙不能同時(shí)參加同一競賽,則不同的參賽方案共有
30
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從甲、乙、丙、丁4名同學(xué)中選出3名同學(xué),分別參加3個(gè)不同科目的競賽,其中甲同學(xué)必須參賽,不同的參賽方案共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省臨沂市臨沭實(shí)驗(yàn)中學(xué)高二(下)段考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

從甲、乙、丙、丁4名同學(xué)中選出3名同學(xué),分別參加3個(gè)不同科目的競賽,其中甲同學(xué)必須參賽,不同的參賽方案共有( )
A.24種
B.18種
C.21種
D.9種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年重慶市萬盛區(qū)田家炳中學(xué)高二(下)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

從甲、乙、丙、丁4名同學(xué)中選出3名同學(xué),分別參加3個(gè)不同科目的競賽,其中甲同學(xué)必須參賽,不同的參賽方案共有( )
A.24種
B.18種
C.21種
D.9種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年山東省聊城市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

從甲、乙、丙、丁4名同學(xué)中選出3名同學(xué),分別參加3個(gè)不同科目的競賽,其中甲同學(xué)必須參賽,不同的參賽方案共有( )
A.24種
B.18種
C.21種
D.9種

查看答案和解析>>

同步練習(xí)冊答案