(I)∵f′(x)=
,f′(x)=
,
∴g(x)=(1+x)
2-1+ln(1+x)
∴g′(x)=2(1+x)+
當(dāng)x≥0時(shí),g′(x)>0,∴g(x)在[0,+∞)上為增函數(shù),
∴g(x)≥g(0)=0,即g(x)的最小值為0;
(II)證明:①當(dāng)n=1時(shí),a
2=f(a
1)=
a1-<a
1=1,
又g(x)≥0,則f′(x)=
≥0
所以f(x)在[0,+∞)上為增函數(shù),即f(x)≥f(0)=0
則a
2=f(a
1)>f(0)=0,所以0<a
2<a
1≤1;
②假設(shè)當(dāng)n=k時(shí),結(jié)論成立,即0<a
k+1<a
k≤1,則
當(dāng)n=k+1時(shí),a
k+2=f(a
k+1)=
ak+1-<a
k+1≤1
∵f(x)在[0,+∞)上為增函數(shù),
∴a
k+2=f(a
k+1)>f(0)=0
∴0<a
k+2<a
k+1≤1,
∴當(dāng)n=k+1時(shí),結(jié)論也成立.
由①②知,0<a
n+1<a
n≤1;
(III)證明:由(II)0<a
n+1<a
n≤1得
>
,即
1+>1+故
< 則T
n=
+
+…+
a1a2…an |
(1+a1)(1+a2)…(1+an) |
<
+
()2+…+
()n=
<
=a
1=1
所以T
n<1成立.