【題目】某廠每日生產一種大型產品2件,每件產品的投入成本為1000元.產品質量為一等品的概率為0.5,二等品的概率為0.4,每件一等品的出廠價為5000元,每件二等品的出廠價為4000元,若產品質量不能達到一等品或二等品,除成本不能收回外,每生產1件產品還會帶來1000元的損失.
(Ⅰ)求在連續(xù)生產的3天中,恰有兩天生產的2件產品都為一等品的概率;
(Ⅱ)已知該廠某日生產的這種大型產品2件中有1件為一等品,求另1件也為一等品的概率;
(Ⅲ)求該廠每日生產這種產品所獲利潤ξ(元)的分布列和期望.
【答案】解:(I)設一天生產的2件產品都為一等品為事件A,則P(A)=0.52=0.25,
∴在連續(xù)生產的3天中,恰有兩天生產的2件產品都為一等品的概率P=0.25×0.25×0.75× = .
(II)設一天中生產的2件產品中,有一件是一等品為事件B,另一件是一等品為事件C,
則P(BC)=P(A)=0.25,P(B)=0.5×0.5+0.5×0.4×2+0.5×0.1×2=0.75,
∴該廠某日生產的這種大型產品2件中有1件為一等品,另1件也為一等品的概率為P(C|B)= =
(III)ξ的可能取值為8000,7000,6000,2000,1000,﹣4000,
ξ的分布列為:
ξ | 8000 | 7000 | 6000 | 2000 | 1000 | ﹣4000 |
P |
|
|
|
|
|
|
E(ξ)=8000× +7000× +6000× +2000× +1000× +(﹣4000)× =6000.
【解析】(I)利用相互獨立事件的概率公式計算;(II)使用條件概率公式計算;(III)列出ξ所有可能的取值及對應的概率,再計算數學期望.
【考點精析】根據題目的已知條件,利用離散型隨機變量及其分布列的相關知識可以得到問題的答案,需要掌握在射擊、產品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.
科目:高中數學 來源: 題型:
【題目】某沿海四個城市A、B、C、D的位置如圖所示,其中∠ABC=60°,∠BCD=135°,AB=80nmile,BC=40+30 nmile,CD=250 nmile,D位于A的北偏東75°方向.現(xiàn)在有一艘輪船從A出發(fā)以50nmile/h的速度向D直線航行,60min后,輪船由于天氣原因收到指令改向城市C直線航行,收到指令時城市C對于輪船的方位角是南偏西θ度,則sinθ= .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某經銷商從外地水產養(yǎng)殖廠購進一批小龍蝦,并隨機抽取40只進行統(tǒng)計,按重量分類統(tǒng)計結果如圖:
(1)記事件A為:“從這批小龍蝦中任取一只,重量不超過35g的小龍蝦”,求P(A)的估計值;
(2)若購進這批小龍蝦100千克,試估計這批小龍蝦的數量;
(3)為適應市場需求,了解這批小龍蝦的口感,該經銷商將這40只小龍蝦分成三個等級,如下表:
等級 | 一等品 | 二等品 | 三等品 |
重量(g) | [5,25) | [25,45) | [45,55] |
按分層抽樣抽取10只,再隨機抽取3只品嘗,記X為抽到二等品的數量,求抽到二級品的期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數).以O為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為ρ=2acosθ(a>0),且曲線C與直線l有且僅有一個公共點.
(Ⅰ)求a;
(Ⅱ)設A、B為曲線C上的兩點,且∠AOB= ,求|OA|+|OB|的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=|3x﹣2|+|x﹣2|.
(Ⅰ)解不等式f(x)≤8;
(Ⅱ)對任意的非零實數x,有f(x)≥(m2﹣m+2)|x|恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A、B、C所對的邊分別是a、b、c,已知sinB+sinC=msinA(m∈R),且a2﹣4bc=0.
(1)當a=2, 時,求b、c的值;
(2)若角A為銳角,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C的極坐標方程是ρ2=4ρcosθ+6ρsinθ﹣12,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為 (t為參數).
(I)寫出直線l的一般方程與曲線C的直角坐標方程,并判斷它們的位置關系;
(II)將曲線C向左平移2個單位長度,向上平移3個單位長度,得到曲線D,設曲線D經過伸縮變換 得到曲線E,設曲線E上任一點為M(x,y),求 的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 內有一點M(2,1),過M的兩條直線l1 , l2分別與橢圓E交于A,C和B,D兩點,且滿足 (其中λ>0,且λ≠1),若λ變化時,AB的斜率總為 ,則橢圓E的離心率為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com