【題目】如圖給出的四個(gè)對(duì)應(yīng)關(guān)系,其中構(gòu)成映射的是( )

A.(1)(2)
B.(1)(4)
C.(1)(2)(4)
D.(3)(4)

【答案】B
【解析】解:(1)(4)可以構(gòu)成映射;

在(2)中,1,4在后一個(gè)集合中找不到對(duì)應(yīng)的元素,故不是映射;

在(3)中,1對(duì)應(yīng)了兩個(gè)數(shù)3,4,故也不是映射;

所以答案是:B.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解映射的相關(guān)定義(對(duì)于映射f:A→B來說,則應(yīng)滿足:(1)集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中對(duì)應(yīng)的象可以是同一個(gè);(3)不要求集合B中的每一個(gè)元素在集合A中都有原象;注意:映射是針對(duì)自然界中的所有事物而言的,而函數(shù)僅僅是針對(duì)數(shù)字來說的.所以函數(shù)是映射,而映射不一定的函數(shù)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個(gè)不重合的平面α,β和兩條不同直線m,n,則下列說法正確的是( )
A.若m⊥n,n⊥α,mβ,則α⊥β
B.若α∥β,n⊥α,m⊥β,則m∥n
C.若m⊥n,nα,mβ,則α⊥β
D.若α∥β,nα,m∥β,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1 的離心率為 ,且經(jīng)過點(diǎn)M 的直徑C1的長(zhǎng)軸.如圖,C是橢圓短軸端點(diǎn),動(dòng)直線AB過點(diǎn)C且與圓C2交于A,B兩點(diǎn),CD垂直于AB交橢圓于點(diǎn)D.

(1)求橢圓C1的方程;
(2)求△ABD面積的最大值,并求此時(shí)直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)g(x)=aln x,f(x)=x3+x2+bx.
(1)若f(x)在區(qū)間[1,2]上不是單調(diào)函數(shù),求實(shí)數(shù)b的范圍;
(2)若對(duì)任意x∈[1,e],都有g(shù)(x)≥﹣x2+(a+2)x恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A、B、C所對(duì)的邊分別為a,b,c,cos2C+2 cosC+2=0.
(1)求角C的大;
(2)若b= a,△ABC的面積為 sinAsinB,求sinA及c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lg(ax2+ax+2)(a∈R).
(1)若a=﹣1,求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)的定義域?yàn)镽,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在空間直角坐標(biāo)系中有直三棱柱ABC﹣A1B1C1 , CA=2CB,CC1=3CB,則直線BC1與直線AB1夾角的余弦值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[﹣2,2]上的奇函數(shù),且f(2)=3,若對(duì)任意的m,n∈[﹣2,2],m+n≠0,都有 >0.
(1)若f(2a﹣1)<f(a2﹣2a+2),求實(shí)數(shù)a的取值范圍;
(2)若不等式f(x)≤(5﹣2a)t+1對(duì)任意x∈[﹣2,2]和a∈[﹣1,2]都恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={y|y=log x, },B={x|y= }.
(1)若a=2,求A∩B;
(2)若A∪B=B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案