已知直線m、n與平面α,β,給出下列三個(gè)命題:
①若m∥α,n∥α,則m∥n;
②若m∥α,n⊥α,則n⊥m;
③若m⊥α,m∥β,則α⊥β.
其中真命題的個(gè)數(shù)是   
【答案】分析:分別加以判斷:若m、n是平面β內(nèi)的相交直線,且β∥α,則m∥α,n∥α,但m不平行于n,故①不正確;若m∥α,則在α內(nèi)可以找到直線m′,使m′∥m,再結(jié)合n⊥α,可得n⊥m′,最終得到n⊥m,故②正確;若m∥β,則在β內(nèi)可以找到直線m′,使m′∥m,結(jié)合m⊥α,得m′⊥α,β經(jīng)過(guò)α的垂線,所以α⊥β,故③正確.
解答:解:對(duì)于①:設(shè)m、n是平面β內(nèi)的相交直線,且β∥α,
∵β∥α
∴m∥α,n∥α,
而m不平行于n,故①不正確;
對(duì)于②:∵m∥α,
∴在α內(nèi)可以找到直線m′,使m′∥m,
又∵n⊥α,m′?α
∴n⊥m′,結(jié)合m′∥m,得到n⊥m,故②正確;
對(duì)于③:∵m∥β,
∴在β內(nèi)可以找到直線m′,使m′∥m,
又∵m⊥α,得m′⊥α,
∵β經(jīng)過(guò)α的垂線,
∴α⊥β,故③正確.
故答案為:2個(gè)
點(diǎn)評(píng):本題考查了空間兩直線、直線與平面位置關(guān)系等知識(shí)點(diǎn),屬于中檔題.熟練掌握直線與平面平行垂直和平面與平面的平行與垂直的判定與性質(zhì),是解好本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

5、已知直線m、n與平面α、β,下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

10、已知直線m、n與平面α,β,給出下列三個(gè)命題:
①若m∥α,n∥α,則m∥n;
②若m∥α,n⊥α,則n⊥m;
③若m⊥α,m∥β,則α⊥β.
其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

14、已知直線m,n與平面α,β,給出下列三個(gè)命題:①若m∥α,n∥α,則m∥n;②若m∥α,n⊥α,則n⊥m;③若m⊥α,m∥β,則α⊥β其中正確命題的序號(hào)是
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線m,n與平面α、β,給出下列命題,其中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線m,n與平面α,β,給出下列四個(gè)命題?
①若m∥α,n∥α,則m∥n
②若m∥α,n⊥α,則m⊥n
③若m⊥α,m∥β,則α⊥β
④若m,n是異面直線,m∥α,n∥α,m∥β,n∥β,則α∥β,
其中正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案