(2012•深圳二模)如果函數(shù)y=|x|-1的圖象與方程x2+λy2=1的曲線恰好有兩個不同的公共點,則實數(shù)λ的取值范圍是( 。
分析:利用絕對值的幾何意義,由y=|x|-1可得,x≥0時,y=x-1;x<0時,y=-x-1,確定函數(shù)y=|x|-1的圖象與方程x2+λy2=1的曲線必相交于(±1,0),為了使函數(shù)y=|x|-1的圖象與方程x2+λy2=1的曲線恰好有兩個不同的公共點,則兩曲線無其它交點.y=x-1代入方程x2+λy2=1,整理可得(1+λ)x2-2λx+λ-1=0,分類討論,可得結論,根據對稱性,同理可得x<0時的情形.
解答:解:由y=|x|-1可得,x≥0時,y=x-1;x<0時,y=-x-1,
∴函數(shù)y=|x|-1的圖象與方程x2+λy2=1的曲線必相交于(±1,0)
所以為了使函數(shù)y=|x|-1的圖象與方程x2+λy2=1的曲線恰好有兩個不同的公共點,則
y=x-1代入方程x2+λy2=1,整理可得(1+λ)x2-2λx+λ-1=0
當λ=-1時,x=1滿足題意,
由于△>0,1是方程的根,∴
λ-1
1+λ
0,即-1<λ<1時,方程兩根異號,滿足題意;
y=-x-1代入方程x2+λy2=1,整理可得(1+λ)x2+2λx+λ-1=0
當λ=-1時,x=-1滿足題意,
由于△>0,-1是方程的根,∴
λ-1
1+λ
0,即-1<λ<1時,方程兩根異號,滿足題意;
綜上知,實數(shù)λ的取值范圍是[-1,1)
故選B.
點評:本題考查曲線的交點,考查學生分析解決問題的能力,考查分類討論的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•深圳二模)已知平面向量
a
,
b
滿足條件
a
+
b
=(0,1),
a
-
b
=(-1,2),則
a
b
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳二模)設a,b,c,d∈R,若a,1,b成等比數(shù)列,且c,1,d 成等差數(shù)列,則下列不等式恒成立的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳二模)已知二次函數(shù)f(x)的最小值為-4,且關于x的不等式f(x)≤0的解集為{x|-1≤x≤3,x∈R}.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)g(x)=
f(x)x
-4lnx
的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳二模)曲線y=(
1
2
)
x
在x=0點處的切線方程是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳二模)執(zhí)行圖中程序框圖表示的算法,若輸入m=5533,n=2012,則輸出d=
503
503
(注:框圖中的賦值符號“=”也可以寫成“←”或“:=”)

查看答案和解析>>

同步練習冊答案