已知球O的半徑為4,圓M與圓N為該球的兩個(gè)小圓,AB為圓M與圓N的公共弦,AB=4,若OM=ON=3,則兩圓圓心的距離MN=
 
分析:根據(jù)題意畫出圖形,欲求兩圓圓心的距離,將它放在與球心組成的三角形MNO中,只要求出球心角即可,通過球的性質(zhì)構(gòu)成的直角三角形即可解得.
解答:精英家教網(wǎng)解法一:∵ON=3,球半徑為4,
∴小圓N的半徑為
7
,
∵小圓N中弦長AB=4,作NE垂直于AB,
∴NE=
3
,同理可得ME=
3
,在直角三角形ONE中,
∵NE=
3
,ON=3,
∠EON=
π
6
,
∠MON=
π
3
,
∴MN=3.
故填:3.
解法二:如下圖:設(shè)AB的中點(diǎn)為C,則OC與MN必相交于MN中點(diǎn)為E,因?yàn)镺M=ON=3,
故小圓半徑NB為
42-32
=
7

C為AB中點(diǎn),故CB=2;所以NC=
7
2
-22
=
3

∵△ONC為直角三角形,NE為△ONC斜邊上的高,OC=
42-22
=
12
=2
3

∴MN=2EN=2•CN•
ON
CO
=2×
3
×
3
2
3
=3
精英家教網(wǎng)
故填:3.
點(diǎn)評(píng):本題主要考查了點(diǎn)、線、面間的距離計(jì)算,還考查球、直線與圓的基礎(chǔ)知識(shí),考查空間想象能力、運(yùn)算能力和推理論證能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知球O的半徑為4,圓M與圓N為該球的兩個(gè)小圓,AB為圓M與圓N的公共弦,AB=4,OM=ON=a,則兩圓的圓心距|MN|的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知球O的半徑為4,A、B是球面上兩點(diǎn),∠AOB=45°,則A、B兩點(diǎn)的球面距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)單元檢測:直線與圓(解析版) 題型:解答題

已知球O的半徑為4,圓M與圓N為該球的兩個(gè)小圓,AB為圓M與圓N的公共弦,AB=4,若OM=ON=3,則兩圓圓心的距離MN=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年高考數(shù)學(xué)試卷精編:9.4 簡單的幾何體(解析版) 題型:解答題

已知球O的半徑為4,圓M與圓N為該球的兩個(gè)小圓,AB為圓M與圓N的公共弦,AB=4,若OM=ON=3,則兩圓圓心的距離MN=   

查看答案和解析>>

同步練習(xí)冊答案