如圖所示,點(diǎn)P在正方形ABCD所在平面外,PA⊥平面ABCD,PA=AB,則PB與AC所成的角是( )
A.90° B.60°
C.45° D.30°
B
【解析】
試題分析:連接BD交AC于點(diǎn)O,取PD中點(diǎn)Q,連接OQ,所以O(shè)Q//PB,
設(shè)正方形ABCD邊長為a,因為PA垂直平面ABCD,PA=AB,所以PD=PB=DB=AC=,
因為在三角形DBP中,O、Q是中點(diǎn),所以,在直角三角形PAD中,, 而,所以三角形AOQ是等邊三角形,即三個角都是60度,所以O(shè)Q與AC所成的角=60度, 因為OQ||PB,所以PB與AC所成的角為60°.
考點(diǎn):本小題主要考查兩條異面直線的夾角.
點(diǎn)評:要求兩條異面直線的夾角,需要先做出兩條異面直線的夾角再求解,注意兩條異面直線的夾角的取值范圍。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:福建省四地六校2012屆高三上學(xué)期第三次月考數(shù)學(xué)理科試題 題型:013
定義:平面內(nèi)兩條相交但不垂直的數(shù)軸構(gòu)成的坐標(biāo)系(兩條數(shù)軸的原點(diǎn)重合且單位長度相同)稱為平面斜坐標(biāo)系;在平面斜坐標(biāo)系xOy中,若(其中分別是斜坐標(biāo)系x軸、y軸正方向上的單位向量,x、y∈R,O為坐標(biāo)原點(diǎn)),則有序?qū)崝?shù)對(x,y)稱為點(diǎn)P的斜坐標(biāo).如圖所示,在平面斜坐標(biāo)系xOy中,若∠xOy=120°,點(diǎn)A(1,0),P為單位圓上一點(diǎn),且∠AOP=,點(diǎn)P在平面斜坐標(biāo)系中的坐標(biāo)是
(sin,cos)
(cos,sin)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:同步題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:福建省月考題 題型:單選題
[ ]
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com