如圖,把橢圓的長軸分成等份,過每個分點作軸的垂線交橢圓的上半部分于七個點,是橢圓的一個焦點,則(   ).
A.50B.35C.32D.41
B
解:不妨設(shè)P點是橢圓上的任意點則由橢圓的第二定義可得:|PF| a2 c - x =" c" a 又a=5,b=4,c=" a2-" b2 =3故|PF|="5-3" 5 x
∵把橢圓x2 25 +y2 16 =1的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點
∴p4點為橢圓與Y軸正半軸的交點且P1,P2,P3與P5,P6,P7分別關(guān)于Y軸對稱
∴不妨設(shè)p1(x1,y1),p2(x2,y2),p3(x3,y3)且x1<0,x2<0,x3<0,p4(0,4)
∴p5(-x3,y3),p6(-x2,y2),p7(-x1,y1)
∴由①可得|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=(5-3 5 x1)+(5-3 5 x2)+(5-3 5 x3)+(5-3 5 ×0)+ (5+3 5 x3)+(5+3 5 x2)+(5+3 5 x1)
∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=5×7=35
故答案選B
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共13分)已知橢圓的右焦點為,為橢圓的上頂點,為坐標(biāo)原點,且△是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線交橢圓于,兩點, 且使點為△的垂心(垂心:三角形三邊高線的交點)?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分13分)
P為橢圓上任意一點,為左、右焦點,如圖所示.
(1)若的中點為,求證:
(2)若∠,求|PF1|·|PF2|之值;
(3)橢圓上是否存在點P,使·=0,若存在,求出P點的坐標(biāo),若不存在,試說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓上的點,以為圓心的圓與軸相切于橢
圓的焦點,圓軸相交于兩點.若為銳角三角形,則橢圓的離心率
的取值范圍為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知焦距為4的橢圓的左、右頂點分別為,橢圓的右焦點為,過作一條垂直于軸的直線與橢圓相交于,若線段的長為。
(1)求橢圓的方程;
(2)設(shè)是直線上的點,直線與橢圓分別交于點,求證:直線必過軸上的一定點,并求出此定點的坐標(biāo);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:+=1(a>b>0),直線y=x+與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點,P為橢圓C上任一點,△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2。⑴求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點A,B且線段AB的垂直平分線過定點C(,0)求實數(shù)k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的離心率,右焦點到直線的距離為,過的直線交橢圓于兩點.(Ⅰ) 求橢圓的方程;(Ⅱ) 若直線軸于,,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的焦點為,點在橢圓上,若,則___.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本題14分)過點的橢圓)的離心率為,橢圓與軸的交于兩點,),,),過點的直線與橢圓交于另一點,并與軸交于點,直線與直線叫與點
(I)當(dāng)直線過橢圓右交點時,求線段的長;
(II)當(dāng)點異于兩點時,求證:為定值.

查看答案和解析>>

同步練習(xí)冊答案