如圖,把橢圓
的長軸
分成
等份,過每個分點作
軸的垂線交橢圓的上半部分于
七個點,
是橢圓的一個焦點,則
( ).
解:不妨設(shè)P點是橢圓上的任意點則由橢圓的第二定義可得:|PF| a2 c - x =" c" a 又a=5,b=4,c=" a2-" b2 =3故|PF|="5-3" 5 x
∵把橢圓x2 25 +y2 16 =1的長軸AB分成8等份,過每個分點作x軸的垂線交橢圓的上半部分于P1,P2,P3,P4,P5,P6,P7七個點
∴p4點為橢圓與Y軸正半軸的交點且P1,P2,P3與P5,P6,P7分別關(guān)于Y軸對稱
∴不妨設(shè)p1(x1,y1),p2(x2,y2),p3(x3,y3)且x1<0,x2<0,x3<0,p4(0,4)
∴p5(-x3,y3),p6(-x2,y2),p7(-x1,y1)
∴由①可得|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=(5-3 5 x1)+(5-3 5 x2)+(5-3 5 x3)+(5-3 5 ×0)+ (5+3 5 x3)+(5+3 5 x2)+(5+3 5 x1)
∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|+|P7F|=5×7=35
故答案選B
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題共13分)已知橢圓
的右焦點為
,
為橢圓的上頂點,
為坐標(biāo)原點,且△
是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)是否存在直線
交橢圓于
,
兩點, 且使點
為△
的垂心(垂心:三角形三邊高線的交點)?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(本小題滿分13分)
P為橢圓
上任意一點,
為左、右焦點,
如圖所示.
(1)若
的中點為
,求證:
(2)若∠
,求|
PF1|·|
PF2|之值;
(3)橢圓上是否存在點
P,使·=0,若存在,求出
P點的坐標(biāo),若不存在,試說明理由
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是橢圓
上的點,以
為圓心的圓與
軸相切于橢
圓的焦點
,圓
與
軸相交于
兩點.若
為銳角三角形,則橢圓的離心率
的取值范圍為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在平面直角坐標(biāo)系中,已知焦距為4的橢圓
的左、右頂點分別為
,橢圓
的右焦點為
,過
作一條垂直于
軸的直線與橢圓相交于
,若線段
的長為
。
(1)求橢圓
的方程;
(2)設(shè)
是直線
上的點,直線
與橢圓
分別交于點
,求證:直線
必過
軸上的一定點,并求出此定點的坐標(biāo);
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓C:
+
=1(a>b>0),直線y=x+
與以原點為圓心,以橢圓C的短半軸長為半徑的圓相切,F(xiàn)
1,F(xiàn)
2為其左、右焦點,P為橢圓C上任一點,△F
1PF
2的重心為G,內(nèi)心為I,且IG∥F
1F
2。⑴求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同
兩點A,B且線段AB的垂直平分線過定點C(
,0)求實數(shù)k的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓
的離心率
,右焦點到直線
的距離為
,過
的直線
交橢圓于
兩點.(Ⅰ) 求橢圓的方程;(Ⅱ) 若直線
交
軸于
,
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(本題14分)過點
的橢圓
(
)的離心率為
,橢圓與
軸的交于兩點
(
,
),
(
,
),過點
的直線
與橢圓交于另一點
,并與
軸交于點
,直線
與直線
叫與點
.
(I)當(dāng)直線
過橢圓右交點時,求線段
的長;
(II)當(dāng)點
異于
兩點時,求證:
為定值.
查看答案和解析>>