(本題滿分18分)如果函數(shù)的定義域為,對于定義域內(nèi)的任意,存在實數(shù)使得成立,則稱此函數(shù)具有“性質(zhì)”.

(1)判斷函數(shù)是否具有“性質(zhì)”,若具有“性質(zhì)”求出所有的值;若不具有“性質(zhì)”,請說明理由.

(2)已知具有“性質(zhì)”,且當(dāng),求上的最大值.

(3)設(shè)函數(shù)具有“性質(zhì)”,且當(dāng)時,.若交點個數(shù)為2013個,求的值.

 

【答案】

(1)具有“性質(zhì)”,其中

(2)當(dāng)時, ;當(dāng)時,

(3)

【解析】

試題分析:(1)由,

根據(jù)誘導(dǎo)公式得

具有“性質(zhì)”,其中.                ……4分

(2)具有“性質(zhì)”,

設(shè),則

,                                          ……6分

當(dāng)時,遞增,,

當(dāng)時,上遞減,在上遞增,且, ,

當(dāng)時,上遞減,在上遞增,且,

綜上所述:

當(dāng)時, ;當(dāng)時,.   ……11分

(3)具有“性質(zhì)”,

,,

從而得到是以2為周期的函數(shù).

又設(shè),則,

再設(shè)),

當(dāng)),,

;

當(dāng)),;

對于,),都有,而,是周期為1的函數(shù).

①當(dāng)時,要使得有2013個交點,只要有2012個交點,而在有一個交點.,從而得

②當(dāng)時,同理可得

③當(dāng)時,不合題意.

綜上所述.                                               ……18分

考點:本小題主要考查新定義下函數(shù)性質(zhì)的考查,考查學(xué)生利用新定義解決問題的能力和分類討論思想的應(yīng)用.

點評:分類討論解決問題時,要準(zhǔn)確分類,分類標(biāo)準(zhǔn)要不重不漏,而且討論完之后要討論.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分18分)本題共有3個小題,第1小題滿分3分,第2小題滿分8分,第3小題滿分7分.

已知拋物線為常數(shù)),為其焦點.

(1)寫出焦點的坐標(biāo);

(2)過點的直線與拋物線相交于兩點,且,求直線的斜率;

(3)若線段是過拋物線焦點的兩條動弦,且滿足,如圖所示.求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海交通大學(xué)附屬中學(xué)2010-2011學(xué)年度高二下學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本題滿分18分)第一題滿分5分,第二題滿分5分,第三題滿分8分.
如圖,有一公共邊但不共面的兩個三角形ABC和A1BC被一平面DEE1D1所截,若平面DEE1D1分別交AB,AC,A1B,A1C于點D,E,D1,E1。
(1)討論這三條交線ED,CB, E1 D1的關(guān)系。
(2)當(dāng)BC//平面DEE1D1時,求的值;

(3)當(dāng)BC不平行平面DEE1D1時, 的值變化嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海市嘉定、黃浦區(qū)2010屆高三第二次模擬考試數(shù)學(xué)文 題型:解答題

(本題滿分18分)本題共有3個小題,第1小題滿分3分,第2小題滿分8分,第3小題滿分7分.
已知拋物線為常數(shù)),為其焦點.
(1)寫出焦點的坐標(biāo);
(2)過點的直線與拋物線相交于兩點,且,求直線的斜率;
(3)若線段是過拋物線焦點的兩條動弦,且滿足,如圖所示.求四邊形面積的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市高三模擬考試?yán)砜茢?shù)學(xué) 題型:解答題

(本題滿分18分,其中第1小題4分,第2小題6分,第,3小題8分)

一青蛙從點開始依次水平向右和豎直向上跳動,其落點坐標(biāo)依次是,(如圖所示,坐標(biāo)以已知條件為準(zhǔn)),表示青蛙從點到點所經(jīng)過的路程。

(1) 若點為拋物線準(zhǔn)線上

一點,點,均在該拋物線上,并且直線經(jīng)

過該拋物線的焦點,證明.

(2)若點要么落在所表示的曲線上,

要么落在所表示的曲線上,并且,

試寫出(不需證明);

(3)若點要么落在所表示的曲線上,要么落在所表示的曲線上,并且,求的表達(dá)式.

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆上海市高二年級期終考試數(shù)學(xué) 題型:解答題

(本題滿分18分)

各項均為正數(shù)的數(shù)列的前項和為,滿足.

(1)求數(shù)列的通項公式;

(2)若數(shù)列滿足,數(shù)列滿足,數(shù)列的前項和為,求;

(3)若數(shù)列,甲同學(xué)利用第(2)問中的,試圖確定的值是否可以等于2011?為此,他設(shè)計了一個程序(如圖),但乙同學(xué)認(rèn)為這個程序如果被執(zhí)行會是一個“死循環(huán)”(即程序會永遠(yuǎn)循環(huán)下去,而無法結(jié)束),你是否同意乙同學(xué)的觀點?請說明理由.

 

 

 

 

 

查看答案和解析>>

同步練習(xí)冊答案