15.根據(jù)如圖所示的偽代碼知,輸出的a的值為21.

分析 模擬程序語言的運(yùn)行過程知,該程序的功能是計算并輸出a的值.

解答 解:模擬程序語言的運(yùn)行過程知,該程序的功能是
計算并輸出a=1+2+3+4+5+6=21.
故答案為:21.

點(diǎn)評 本題考查了利用程序計算并幾個連續(xù)自然數(shù)和的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=|ax-4|-|ax+8|,a∈R,若f(x)≤k恒成,求k的取值范圍[12,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知過曲線$\left\{\begin{array}{l}{x=3sinθ}\\{y=3cosθ}\end{array}\right.$(θ為參數(shù),0≤θ≤π)上一點(diǎn)P與原點(diǎn)O的直線PO的傾斜角為$\frac{π}{2}$,則P點(diǎn)坐標(biāo)是( 。
A.(0,3)B.$(-\frac{12}{5},-\frac{12}{5})$C.(-3,0)D.$(\frac{12}{5},\frac{12}{5})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)g(x)=1-cos(πx+ϕ)(0≤ϕ<π)的圖象過($\frac{1}{2}$,2),若有4個不同的正數(shù)xi滿足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),則從這四個數(shù)中任意選出兩個,它們的和不超過5的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖是“二分法”求方程近似解的流程圖,在①,②處應(yīng)填寫的內(nèi)容分別是( 。
A.f(a)•f(m)<0?;b=mB.f(b)•f(m)<0?;b=mC.f(a)•f(m)<0?;m=bD.f(b)•f(m)<0?;b=m

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=2x+1,則f(0)+f(1)=(  )
A.$-\frac{3}{2}$B.1C.$\frac{1}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,某生態(tài)園將一塊三角形地ABC的一角APQ開辟為水果園,已知角A為120°,AB,AC的長度均大于200米,現(xiàn)在邊界AP,AQ處建圍墻,在PQ處圍竹籬笆.
(1)若圍墻AP、AQ總長度為200米,如何可使得三角形地塊APQ面積最大?
(2)已知竹籬笆長為$50\sqrt{3}$米,AP段圍墻高1米,AQ段圍墻高2米,造價均為每平方米100元,求圍墻總造價的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c且b=acosC+$\frac{\sqrt{3}}{3}$csinA,
(1)求角A的值;
(2)若a=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知向量$\overrightarrow{a}$=(sin(ωx+φ),2),$\overrightarrow$=(1,cos(ωx+φ)),(ω>0,0<φ<$\frac{π}{4}$),函數(shù)f(x)=($\overrightarrow{a}$+$\overrightarrow$)•($\overrightarrow{a}$-$\overrightarrow$)的圖象過點(diǎn)M(1,$\frac{7}{2}$),且相鄰兩對稱軸之間的距離為2.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)求f(x)在[-$\frac{2}{3}$,2]上的最大值,并求出此時x的值.

查看答案和解析>>

同步練習(xí)冊答案