20.執(zhí)行如圖所示的程序框圖,則輸出m=( 。
A.2.25B.2.5C.2.625D.2.75

分析 分析如圖所示的程序框圖知,該程序的功能是
利用二分法求函數(shù)f(x)在閉區(qū)間[2,3]內(nèi)的實(shí)數(shù)根,且精確到0.5,求出即可.

解答 解:模擬執(zhí)行如圖所示的程序框圖如下,
a=2,b=3,d=0.5,m=$\frac{2+3}{2}$=2.5,
且f(2)f(2.5)=(lg2-1)(lg2.5-0.5)>0,
得a=2.5,|2.5-3|≥0.5;
則m=$\frac{2.5+3}{2}$=2.75,b=2.75,
且f(2.5)f(2.75)=(lg2.5-0.5)(lg2.75-0.25)<0,
滿足|2.5-2.75|<0.5,
則輸出m=2.75.
故選:D.

點(diǎn)評 本題考查了程序框圖的應(yīng)用問題,也考查了二分法求函數(shù)在閉區(qū)間內(nèi)的實(shí)數(shù)根問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)已知f($\sqrt{x}$+1)=x+2$\sqrt{x}$,求f(x)的解析式;
(2)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=|x-a|+|x+a|.
(Ⅰ)當(dāng)a=2時(shí),解不等式f(x)>6;
(Ⅱ)若關(guān)于x的不等式f(x)<a2-1有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.畫出計(jì)算1+$\frac{1}{3}$+$\frac{1}{5}$+…+$\frac{1}{999}$的值的一個(gè)程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點(diǎn)O、N、P在三角形ABC所在平面內(nèi),且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,$\overrightarrow{PA}•\overrightarrow{PB}$=$\overrightarrow{PB}•\overrightarrow{PC}$=$\overrightarrow{PC}•\overrightarrow{PA}$,則點(diǎn)O、N、P依次是三角形ABC的( 。
A.重心、外心、垂心B.重心、外心、內(nèi)心C.外心、重心、垂心D.外心、重心、內(nèi)心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)z=1-i(i為虛數(shù)單位),若復(fù)數(shù)$\frac{2}{z}$-z2在復(fù)平面內(nèi)對應(yīng)的向量為$\overrightarrow{OZ}$,則向量$\overrightarrow{OZ}$的模是(  )
A.$\sqrt{2}$B.2C.$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在平面直角坐標(biāo)系中,橢圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosα}\\{y=\sqrt{3}sinα}\end{array}\right.$(α為參數(shù)),已知以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系.
(Ⅰ)把橢圓C的參數(shù)方程化為極坐標(biāo)方程;
(Ⅱ)設(shè)A,B分別為橢圓C上的兩點(diǎn),且OA⊥OB,求$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|2x-a|+|x-1|,a∈R.
(Ⅰ)若不等式f(x)≥2-|x-1|恒成立,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)a=1時(shí),直線y=m與函數(shù)f(x)的圖象圍成三角形,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在直角坐標(biāo)系中xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=acost\\ y=2sint\end{array}\right.(t$為參數(shù),a>0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知直線l的極坐標(biāo)方程為$ρcos({θ+\frac{π}{4}})=-2\sqrt{2}$.
(1)設(shè)P是曲線C上的一個(gè)動點(diǎn),當(dāng)a=2$\sqrt{3}$時(shí),求點(diǎn)P到直線l的距離的最大值;
(2)若曲線C上所有的點(diǎn)均在直線l的右下方,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案