在△ABC中,根據(jù)條件解三角形,a=2,b=6,A=30°。
解:a=2,b=6,a<b,A=30°<90°,
又∵bsinA=6sin30°=3,a>bsinA,
∴本題有兩解,
由正弦定理得,∴B=60°或120°;
當(dāng)B=60°時(shí),C=90°,;
當(dāng)B=120°時(shí),C=30°,;
∴B=60°,C=90°,c=4或B=120°,C=30°,c=2。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,在三棱柱A1B1C1-ABC中,AA1⊥底面ABC,AC⊥BC.AC=BC=CC1=2.
(1)若點(diǎn)D、E、F分別為棱CC1、C1B1、CA的中點(diǎn),求證:EF⊥平面A1BD;
(2)請(qǐng)根據(jù)下列要求設(shè)計(jì)切割和拼接方法:要求用平行于三棱柱A1B1C1-ABC的某一條側(cè)棱的平面去截此三棱柱,切開后的兩個(gè)幾何體再拼接成一個(gè)長方體.簡單地寫出一種切割和拼接方法,
并寫出拼接后的長方體的表面積(不必寫出計(jì)算過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定理:三角形的外心O、重心G、垂心H依次在同一條直線(歐拉線)上,且
OG
=
1
3
OH
,其中外心O是三條邊的中垂線的交點(diǎn),重心G是三條邊的中線的交點(diǎn),垂心H是三條高的交點(diǎn).如圖,在△ABC中,AB>AC,AB>BC,M是邊BC的中點(diǎn),AH⊥BC(N是垂足),O是外心,G是重心,H是垂心,OM=1,則根據(jù)定理可求得
OG
HN
的最大值是
1
12
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在三棱柱A1B1C1-ABC中,AA1⊥底面ABC,AC⊥BC.AC=BC=CC1=2.
(1)若點(diǎn)D、E、F分別為棱CC1、C1B1、CA的中點(diǎn),求證:EF⊥平面A1BD;
(2)請(qǐng)根據(jù)下列要求設(shè)計(jì)切割和拼接方法:要求用平行于三棱柱A1B1C1-ABC的某一條側(cè)棱的平面去截此三棱柱,切開后的兩個(gè)幾何體再拼接成一個(gè)長方體.簡單地寫出一種切割和拼接方法,
并寫出拼接后的長方體的表面積(不必寫出計(jì)算過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年廣東省廣州市高二數(shù)學(xué)競(jìng)賽試卷(解析版) 題型:解答題

如圖所示,在三棱柱A1B1C1-ABC中,AA1⊥底面ABC,AC⊥BC.AC=BC=CC1=2.
(1)若點(diǎn)D、E、F分別為棱CC1、C1B1、CA的中點(diǎn),求證:EF⊥平面A1BD;
(2)請(qǐng)根據(jù)下列要求設(shè)計(jì)切割和拼接方法:要求用平行于三棱柱A1B1C1-ABC的某一條側(cè)棱的平面去截此三棱柱,切開后的兩個(gè)幾何體再拼接成一個(gè)長方體.簡單地寫出一種切割和拼接方法,
并寫出拼接后的長方體的表面積(不必寫出計(jì)算過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:《平面向量》2013年高三數(shù)學(xué)一輪復(fù)習(xí)單元訓(xùn)練(上海交大附中)(解析版) 題型:填空題

定理:三角形的外心O、重心G、垂心H依次在同一條直線(歐拉線)上,且=,其中外心O是三條邊的中垂線的交點(diǎn),重心G是三條邊的中線的交點(diǎn),垂心H是三條高的交點(diǎn).如圖,在△ABC中,AB>AC,AB>BC,M是邊BC的中點(diǎn),AH⊥BC(N是垂足),O是外心,G是重心,H是垂心,OM=1,則根據(jù)定理可求得的最大值是   

查看答案和解析>>

同步練習(xí)冊(cè)答案