直線l與橢圓=1交于P、Q兩點(diǎn),已知l的斜率為1,則弦PQ的中點(diǎn)軌跡方程為________.

答案:x+4y=0.
解析:

  設(shè)P(x1,y1)、Q(x2,y2),PQ的中點(diǎn)M(x0,y0),

  則=1,=1,

  ∴=-(y1-y2)(y1+y2).

  又=1,x1+x2=2x0,y1+y2=2y0,

  ∴=-2y0,即x0+4y0=0,故所求PQ中點(diǎn)的軌跡方程為x+4y=0.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:廣東省深圳高級(jí)中學(xué)2010-2011學(xué)年高二上學(xué)期期中考試數(shù)學(xué)理科試題 題型:044

設(shè)直線l:y=kx+m(其中k,m為整數(shù))與橢圓=1交于不同兩點(diǎn)A,B,與雙曲線=1交于不同兩點(diǎn)C,D,問是否存在直線l,使得向量,若存在,指出這樣的直線有多少條?若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009屆寧夏省期末數(shù)學(xué)模擬試題分類匯編(直線與圓) 題型:044

已知圓O:x2+y2=1,點(diǎn)O為坐標(biāo)原點(diǎn),一條直線l:y=kx+b(b>0)與圓O相切并與橢圓=1交于不同的兩點(diǎn)A、B

(1)設(shè)b=f(k),求f(k)的表達(dá)式;

(2)若,求直線l的方程;

(3)若,求三角形OAB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年湖南省高二上學(xué)期質(zhì)量檢測(cè)數(shù)學(xué)理卷 題型:解答題

(本小題滿分12分)已知直線x-2y+2=0經(jīng)過橢圓C:=1(>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓C上位于x軸上方

的動(dòng)點(diǎn),直線AS、BS與直線l:x=分別交于M、N兩點(diǎn).

(1)求橢圓C的方程;                     

(2)求線段MN的長(zhǎng)度的最小值;

(3)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使得△TSB的面積為?若存在,確定點(diǎn)T的個(gè)數(shù),若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線x-2y+2=0經(jīng)過橢圓C:=1(a>b>0)的左頂點(diǎn)A和上頂點(diǎn)D,橢圓C的右頂點(diǎn)為B,點(diǎn)S是橢圓C上位于x軸上方的動(dòng)點(diǎn),直線AS,BS與直線l:x=分別交于M,N兩點(diǎn).

(1)求橢圓C的方程;

(2)求線段MN的長(zhǎng)度的最小值;

(3)當(dāng)線段MN的長(zhǎng)度最小時(shí),在橢圓C上是否存在這樣的點(diǎn)T,使得△TSB的面積為?若存在,確定點(diǎn)T的個(gè)數(shù),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案