某商場(chǎng)準(zhǔn)備在五一勞動(dòng)節(jié)期間舉行促銷(xiāo)活動(dòng),根據(jù)市場(chǎng)調(diào)查,該商場(chǎng)決定從3種服裝商品、2種家電商品、4種日用商品中,選出3種商品進(jìn)行促銷(xiāo)活動(dòng).
(1)試求選出的3種商品至少有一種日用商品的概率;
(2)商場(chǎng)對(duì)選出的A商品采用的促銷(xiāo)方案是有獎(jiǎng)銷(xiāo)售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高180元,同時(shí)允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都可獲得一定數(shù)額的獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否是等概率的.
請(qǐng)問(wèn):商場(chǎng)應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為多少元,才能使促銷(xiāo)方案對(duì)自己有利?
分析:(1)確定從3種服裝商品、2種家電商品,4種日用商品中,選出3種商品總的選法,沒(méi)有日用商品的選法,利用對(duì)立事件的概率公式,可得結(jié)論;
(2)確定變量的取值,求出相應(yīng)的概率,可得期望值,要使促銷(xiāo)方案對(duì)商場(chǎng)有利,因此應(yīng)有期望值≤180,即可得出結(jié)論.
解答:解:(1)從3種服裝商品、2種家電商品,4種日用商品中,選出3種商品,一共有
C
3
9
種不同的選法,選出的3種商品中,沒(méi)有日用商品的選法有
C
3
5
種.
所以選出的3種商品至少有一種日用商品的概率為P=1-
C
3
5
C
3
9
=
37
42

(2)假設(shè)商場(chǎng)將中獎(jiǎng)獎(jiǎng)金數(shù)額定為x元,則顧客在三歡抽獎(jiǎng)中所獲得的獎(jiǎng)金總額是一個(gè)隨機(jī)變量ξ,其所有可能的取值為0,x,2x,3x
∴P(ξ=0)=(
1
2
)3
=
1
8
;P(ξ=x)=
C
1
3
1
2
•(
1
2
)2
=
3
8
;P(ξ=2x)=
C
2
3
(
1
2
)
2
1
2
=
3
8
;P(ξ=3x)=
C
3
3
(
1
2
)
3
=
1
8
,
于是顧客在三次抽獎(jiǎng)中所獲得的獎(jiǎng)金總額的期望值是Eξ=0×
1
8
+x×
3
8
+2x×
3
8
+3x×
1
8
=1.5x.
要使促銷(xiāo)方案對(duì)商場(chǎng)有利,因此應(yīng)有1.5x≤180,∴x≤120.
故商場(chǎng)應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為120元.才能使促銷(xiāo)方案對(duì)自己有利.
點(diǎn)評(píng):本題考查概率的計(jì)算,考查利用概率知識(shí)解決實(shí)際問(wèn)題,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某商場(chǎng)準(zhǔn)備在五一勞動(dòng)節(jié)期間舉行促銷(xiāo)活動(dòng),根據(jù)市場(chǎng)調(diào)查,該商場(chǎng)決定從3種服裝商品、2種家電商品、4種日用商品中,選出3種商品進(jìn)行促銷(xiāo)活動(dòng).
(Ⅰ)試求選出的3種商品中至少有一種日用商品的概率;
(Ⅱ)商場(chǎng)對(duì)選出的A商品采用的促銷(xiāo)方案是有獎(jiǎng)銷(xiāo)售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高90元,同時(shí)允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都可獲得一定數(shù)額的獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否是等可能的,請(qǐng)問(wèn):商場(chǎng)應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為多少元,才能使促銷(xiāo)方案對(duì)自己有利?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年甘肅省度高二下學(xué)期第二次檢測(cè)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

某商場(chǎng)準(zhǔn)備在五一勞動(dòng)節(jié)期間舉行促銷(xiāo)活動(dòng),根據(jù)市場(chǎng)調(diào)查,該商場(chǎng)決定從3種服裝商品、2種家電商品、4種日用商品中,選出3種商品進(jìn)行促銷(xiāo)活動(dòng).

(Ⅰ)試求選出的3種商品中至少有一種日用商品的概率;

(Ⅱ)商場(chǎng)對(duì)選出的A商品采用的促銷(xiāo)方案是有獎(jiǎng)銷(xiāo)售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高90元,同時(shí)允許顧客有3次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都可獲得一定數(shù)額的獎(jiǎng)金.假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否是等可能的,請(qǐng)問(wèn):商場(chǎng)應(yīng)將中獎(jiǎng)獎(jiǎng)金數(shù)額最高定為多少元,才能使促銷(xiāo)方案對(duì)自己有利?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河北省高二下學(xué)期期中考試數(shù)學(xué)(文) 題型:解答題

(本小題滿(mǎn)分12分) 

某商場(chǎng)準(zhǔn)備在五一勞動(dòng)節(jié)期間舉行促銷(xiāo)活動(dòng),根據(jù)市場(chǎng)調(diào)查,該商場(chǎng)決定從2種服裝商品、3種家電商品、5種日用商品中,選出3種商品進(jìn)行促銷(xiāo)活動(dòng)。

(I)試求選出的3種商品中至少有一種是日用商品的概率;

(II)商場(chǎng)對(duì)選出的A商品采用的促銷(xiāo)方案是有獎(jiǎng)銷(xiāo)售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高120元,同時(shí)允許顧客有3 次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都可獲得60元獎(jiǎng)金,假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否是等可能的。試求某位顧客所中獎(jiǎng)金數(shù)不低于商場(chǎng)提價(jià)數(shù)的概率。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年河北省正定中學(xué)高二下學(xué)期期中考試數(shù)學(xué)(文) 題型:解答題

(本小題滿(mǎn)分12分) 
某商場(chǎng)準(zhǔn)備在五一勞動(dòng)節(jié)期間舉行促銷(xiāo)活動(dòng),根據(jù)市場(chǎng)調(diào)查,該商場(chǎng)決定從2種服裝商品、3種家電商品、5種日用商品中,選出3種商品進(jìn)行促銷(xiāo)活動(dòng)。
(I)試求選出的3種商品中至少有一種是日用商品的概率;
(II)商場(chǎng)對(duì)選出的A商品采用的促銷(xiāo)方案是有獎(jiǎng)銷(xiāo)售,即在該商品現(xiàn)價(jià)的基礎(chǔ)上將價(jià)格提高120元,同時(shí)允許顧客有3 次抽獎(jiǎng)的機(jī)會(huì),若中獎(jiǎng),則每次中獎(jiǎng)都可獲得60元獎(jiǎng)金,假設(shè)顧客每次抽獎(jiǎng)時(shí)獲獎(jiǎng)與否是等可能的。試求某位顧客所中獎(jiǎng)金數(shù)不低于商場(chǎng)提價(jià)數(shù)的概率。

查看答案和解析>>

同步練習(xí)冊(cè)答案