11.sin63°cos33°-sin27°sin33°=( 。
A.0B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.1

分析 利用誘導(dǎo)公式、兩角和的正弦公式化簡(jiǎn)三角函數(shù)式,可的結(jié)果.

解答 解:sin63°cos33°-sin27°sin33°=sin63°cos33°-cos63°sin33°=sin(63°-33°)=sin30°=$\frac{1}{2}$,
故選:B.

點(diǎn)評(píng) 本題主要考查應(yīng)用誘導(dǎo)公式、兩角和的正弦公式化簡(jiǎn)三角函數(shù)式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知一個(gè)四棱錐的底面是平行四邊形,該四棱錐的三視圖如圖所示(單位:m),則該四棱錐的體積為( 。﹎3
A.4B.$\frac{7}{3}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.下列說(shuō)法正確的是(  )
A.長(zhǎng)度相等的向量叫做相等向量
B.共線向量是在同一條直線上的向量
C.零向量的長(zhǎng)度等于0
D.$\overrightarrow{AB}$∥$\overrightarrow{CD}$就是$\overrightarrow{AB}$所在的直線平行于$\overrightarrow{CD}$所在的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)a,b,c為正數(shù),p=a+$\frac{1}$,q=b+$\frac{1}{c}$,r=c+$\frac{1}{a}$,則下列說(shuō)法正確的是(  )
A.p,q,r都不大于2B.p,q,r都不小于2
C.p,q,r至少有一個(gè)不小于2D.p,q,r至少有一個(gè)不大于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知2a2=2b2+2c2-bc,且a=2b,
(1)求cosA;
(2)求cos(A-B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知四點(diǎn)A(-3,1)、B(-1,-2)、C(2,0)、D(3m2,m+4).
(Ⅰ)求證:$\overrightarrow{AB}$⊥$\overrightarrow{BC}$;
(Ⅱ)若$\overrightarrow{AD}$∥$\overrightarrow{BC}$,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.某小組共有5名學(xué)生,其中男生3名,女生2名,現(xiàn)選舉2名代表,則恰有1名女生當(dāng)選的概率為(  )
A.$\frac{1}{5}$B.$\frac{3}{5}$C.$\frac{1}{10}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知f(x)=x2+ax+3在區(qū)間(1,2)上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-4]B.[-2,+∞)C.[-4,-2]D.(-∞,-4]∪[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.如圖所示,平面ABC⊥平面BCDE,BC∥DE,$BC=\frac{1}{2}DE=2$,BE=CD=2,AB⊥BC,M,N分別為DE,AD中點(diǎn).
(1)證明:平面MNC⊥平面BCDE;
(2)若EC⊥CD,點(diǎn)P為棱AD的三等分點(diǎn)(近A),平面PMC與平面ABC所成銳二面角的余弦值為$\frac{{\sqrt{39}}}{13}$,求棱AB的長(zhǎng)度.

查看答案和解析>>

同步練習(xí)冊(cè)答案