已知過拋物線y2 =2px(p>0)的焦點F的直線x-my+m=0與拋物線交于A,B兩點,且△OAB(O為坐標(biāo)原點)的面積為2,則m6+ m4的值為( )
A.1 | B. 2 | C.3 | D.4 |
B
解析試題分析:由題意,可知該拋物線的焦點為,它過直線,代入直線方程,可知:
求得
∴直線方程變?yōu)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/ad/9/1whg84.png" style="vertical-align:middle;" />
A,B兩點是直線與拋物線的交點,
∴它們的坐標(biāo)都滿足這兩個方程.
∴
∴
∴方程的解,
;
代入直線方程,可知: ,
,
△OAB的面積可分為△OAP與△OBP的面積之和,
而△OAP與△OBP若以O(shè)P為公共底,
則其高即為A,B兩點的y軸坐標(biāo)的絕對值,
∴△OAP與△OBP的面積之和為:
求得p=2,
∵ ,所以 ,∴.
故答案為:B
考點:橢圓的簡單性質(zhì)
點評:本題主要考查了橢圓的簡單性質(zhì),直線,拋物線與橢圓的關(guān)系.考查了學(xué)生綜合分析問題和基本的運算能力.
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)F為拋物線的焦點,為拋物線上不同的三點,點是△ABC的重心,為坐標(biāo)原點,△、△、△的面積分別為、、,則( )
A.9 | B.6 | C.3 | D.2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知雙曲線:的離心率,過雙曲線的左焦點作:的兩條切線,切點分別為、,則的大小等于( )
A.45° | B.60° | C.90° | D.120° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知雙曲線的兩個焦點恰為橢圓的兩個頂點,且離心率為2,則該雙曲線的標(biāo)準(zhǔn)方程為 ( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,有一條長度為1的線段EF,其端點E、F分別在邊長為3的正方形ABCD的四邊上滑動,當(dāng)F沿正方形的四邊滑動一周時,EF的中點M所形成的軌跡長度最接近于( )
A.8 | B.11 |
C.12 | D.10 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知是雙曲線的兩個焦點,Q是雙曲線上任一點(不是頂點),從某一焦點引的平分線的垂線,垂足為P,則點P的軌跡是
A.直線 | B.圓 | C.橢圓 | D.雙曲線 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com