某化妝品生產企業(yè)為了占有更多的市場份額,擬在2010年世博會期間進行一系列促銷活動,經過市場調查和測算,化妝品的年銷量x萬件與年促銷費t萬元之間滿足3-x與t+1成反比例,如果不搞促銷活動,化妝品的年銷量只能是1萬件,已知2010年生產化妝品的設備折舊、維修等固定費用為3萬元,每生產1萬件化妝品需要再投入32萬元的生產費用,若將每件化妝品的售價定為:其生產成本的150%與平均每件促銷費的一半之和,則當年生產的化妝品正好能銷完.
(1)將2010年利潤y(萬元)表示為促銷費t(萬元)的函數(shù);
(2)該企業(yè)2010年的促銷費投入多少萬元時,企業(yè)的年利潤最大?
(注:利潤=銷售收入-生產成本-促銷費,生產成本=固定費用+生產費用)
【答案】
分析:(1)根據(jù)題意,3-x與t+1成反比例,列出關系式,然后根據(jù)當t=0時,x=1,求出k的值,通過x表示出年利潤y,并化簡,代入整理即可求出y萬元表示為促銷費t萬元的函數(shù).
(2)根據(jù)已知代入(1)的函數(shù),分別進行化簡,利用關于t的方程必須有兩正根建立關系式,可求出最值,即促銷費投入多少萬元時,企業(yè)的年利潤最大.
解答:解:(1)由題意:
,
且當t=0時,x=1.
所以k=2,即
.
當年銷量為x萬件時,成本為3+32x(萬元).
化妝品的售價為
(萬元/萬件)
所以年利潤y=
(萬元)
把
代入整理得到
,其中t≥0.
(2)去分母整理得到:t
2+2(y-49)t+2y-35=0.
該關于t的方程在[0,+∞)上有解.
當2y-35≤0,即y≤17.5時,必有一解.
當2y-35>0時,該關于t的方程必須有兩正根
所以
.解得:17.5<y≤42.
綜上,年利潤最大為42萬元,此時促銷費t=7(萬元).
所以當促銷費定在7萬元時,企業(yè)的年利潤最大.…(12分)
點評:本小題主要考查函數(shù)模型的選擇與應用、方程根的分布等基礎知識,考查學生分析問題和解決問題的能力,強調對知識的理解和熟練運用,屬于中檔題.