橢圓:
x2
a2
+
y2
b2
=1
(a>b>0),左右焦點(diǎn)分別是F1,F(xiàn)2,焦距為2c,若直線y=
3
(x+c)
與橢圓交于M點(diǎn),滿足∠MF1F2=2∠MF2F1,則離心率是(  )
分析:依題意知,直線y=
3
(x+c)經(jīng)過橢圓的左焦點(diǎn)F1(-c,0),且傾斜角為60°,從而知∠MF2F1=30°,設(shè)|MF1|=x,利用橢圓的定義即可求得其離心率.
解答:解:∵橢圓的方程為
x2
a2
+
y2
b2
=1(a>b>0),作圖如右圖:
∵橢圓的焦距為2c,
∴直線y=
3
(x+c)經(jīng)過橢圓的左焦點(diǎn)F1(-c,0),又直線y=
3
(x+c)與橢圓交于M點(diǎn),
∴傾斜角∠MF1F2=60°,又∠MF1F2=2∠MF2F1,
∴∠MF2F1=30°,
∴∠F1MF2=90°.
設(shè)|MF1|=x,則|MF2|=
3
x,|F1F2|=2c=2x,故x=c.
∴|MF1|+|MF2|=(
3
+1)x=(
3
+1)c,
又|MF1|+|MF2|=2a,
∴2a=(
3
+1)c,
∴該橢圓的離心率e=
c
a
=
2
3
+1
=
3
-1.
故選:B.
點(diǎn)評:本題考查橢圓的簡單性質(zhì),著重考查直線與橢圓的位置關(guān)系,突出橢圓定義的考查,理解得到直線y=
3
(x+c)經(jīng)過橢圓的左焦點(diǎn)F1(-c,0)是關(guān)鍵,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點(diǎn)M,與橢圓C相交于兩點(diǎn)A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)-1<a<-
1
2
,則橢圓
x2
a2
+
y2
(a+1)2
=1
的離心率的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“a2>1”是“方程
x2
a2
+y2=1表示橢圓”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列五個結(jié)論其中正確的是( 。
①若實(shí)數(shù)x,y滿足(x-2)2+y2=3,則
y
x
的最大值為
3
;②橢圓
x2
4
+
y2
3
=1
與橢圓
x2
2
+
2y2
3
=1
有相同的離心率;③雙曲線
x2
2-k
+
y2
3-k
=1
的焦點(diǎn)坐標(biāo)是(1,0),(-1,0)④圓x2+y2=1與直線y=kx+2沒有 公共點(diǎn)的充要條件是k∈(-
3
,
3
)
⑤設(shè)a>1,則雙曲線
x2
a2
-
y2
(a+1)2
=1
的離心率e的取值范圍是(
2
,
5
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•溫州二模)橢圓
x2
a2
+y2=1的一個焦點(diǎn)在拋物線y2=4x的準(zhǔn)線上,則該橢圓的離心率為( 。

查看答案和解析>>

同步練習(xí)冊答案